Merry Christmas!!

[imath]5^2 \times 10^6 + (3 \times 4) \times 10^4 + (5 \times 4) \times 10^2 + 23[/imath]

Happy holidays
 
[imath]1 + 3 = 2^{2 - 2} + 2 + 2^{2 - 2}[/imath]

[imath]25 = 25[/imath]

[imath]12 = \left(25 \div \left(25^{25 - 25} + 25^{25 - 25} \right)\right) - \left(\frac{\sqrt {25}}{\sqrt {25} + \sqrt {25}} \right)[/imath]

[imath]2023 = ((25 + 25) - \sqrt {25})^{(25^{25 - 25} + 25^{25 - 25})} + 25 - (25^{25 - 25} + 25^{25 - 25})[/imath]
 
Last edited:
[imath]1 + 3 = 2^{2 - 2} + 2 + 2^{2 - 2}[/imath]

[imath]25 = 25[/imath]

[imath]12 = \left(25 \div \left(25^{25 - 25} + 25^{25 - 25} \right)\right) - \left(\frac{\sqrt {25}}{\sqrt {25} + \sqrt {25}} \right)[/imath]

[imath]2023 = ((25 + 25) - \sqrt {25})^{(25^{25 - 25} + 25^{25 - 25})} + 25 - (25^{25 - 25} + 25^{25 - 25})[/imath]
Erratum ...

[imath]2023 = ((25 + 25) - \sqrt {25})^{(25^{25 - 25} + 25^{25 - 25})} - (25^{25 - 25} + 25^{25 - 25})[/imath]
 
In Australia, we would write it as 31/12/23 ie DDMMYY

I think Australians are able to not fall off the bottom of the Earth because they walk around in magnetized shoes on metal ground, or
they wear iron shoes while walking around on magnetized ground.

By the way, happy beginning of summer to the Australians.
 
Top