Let \(\displaystyle \mathbf{B} = \frac{1}{\sqrt{2}} \begin{pmatrix}1& 0\\ 1& 0\end{pmatrix}\)
Which vectors \(\displaystyle \mathbf{x}\epsilon \mathbb{R}^2\) satisfy the equation \(\displaystyle \mathbf{Bx} = \begin{pmatrix}3\\3\end{pmatrix}\)?
Attempt:
\(\displaystyle \frac{1}{\sqrt{2}}\begin{pmatrix}1 & 0\\ 1& 0\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}3\\3\end{pmatrix}\)
\(\displaystyle \frac{1}{\sqrt{2}}\begin{pmatrix}x\\x\end{pmatrix}=\begin{pmatrix}3\\3\end{pmatrix}\)
I dont know what to do now
Which vectors \(\displaystyle \mathbf{x}\epsilon \mathbb{R}^2\) satisfy the equation \(\displaystyle \mathbf{Bx} = \begin{pmatrix}3\\3\end{pmatrix}\)?
Attempt:
\(\displaystyle \frac{1}{\sqrt{2}}\begin{pmatrix}1 & 0\\ 1& 0\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}3\\3\end{pmatrix}\)
\(\displaystyle \frac{1}{\sqrt{2}}\begin{pmatrix}x\\x\end{pmatrix}=\begin{pmatrix}3\\3\end{pmatrix}\)
I dont know what to do now