matrix of linear transformation

tinzors

New member
Joined
Dec 11, 2012
Messages
1
Hi, I have a problem I need help with:
Find a Linear Transformation L: R3 --> R2 such that


L[1;0;0] = [1;0], L[0;2;1] = [1;1], L[2;1;1] = [0;-2]


Thank you in advance!!
 
Hi, I have a problem I need help with:
Find a Linear Transformation L: R3 --> R2 such that


L[1;0;0] = [1;0], L[0;2;1] = [1;1], L[2;1;1] = [0;-2]


Thank you in advance!!

Please define Matrix Linear Transformation for us. Then....

You need to read the rules of this forum. Please read the post titled "Read before Posting" at the following URL:

http://www.freemathhelp.com/forum/th...217#post322217

We can help - we only help after you have shown your work - or ask a specific question (not a statement like "Don't know any of these")

Please share your work with us indicating exactly where you are stuck - so that we may know where to begin to help you.
 
Hello, tinzors!

I may have misread the problem.
I am fuzzy on Transformations.


\(\displaystyle \text{Find a linear transformation }\,L\!:\:R^3 \to R^2\)

\(\displaystyle \text{such that: }\:L[1,0,0] = [1,0],\;\;\; L[0,2,1] = [1,1],\;\; L[2,1,1] = [0,\text{-}2]\)

We seek a 3x2 matrix \(\displaystyle L \:=\:\begin{bmatrix}a&b\\c&d\\e&f\end{bmatrix}\) so that:

. . \(\displaystyle \begin{bmatrix}1&0&0\end{bmatrix}\begin{bmatrix}a&b\\c&d\\e&f\end{bmatrix} \:=\:\begin{bmatrix}1&0\end{bmatrix}\) . [1]

. . \(\displaystyle \begin{bmatrix}0&2&1\end{bmatrix}\begin{bmatrix}a&b\\c&d\\e&f\end{bmatrix} \:=\:\begin{bmatrix}1&1\end{bmatrix}\) . [2]

. . \(\displaystyle \begin{bmatrix}2&1&1\end{bmatrix}\begin{bmatrix}a&b\\c&d\\e&f\end{bmatrix} \:=\:\begin{bmatrix}0&\text{-}2\end{bmatrix}\) . [3]


From [1]: .\(\displaystyle [a,\,b] \:=\:[1,\,0]\)

From [2]: .\(\displaystyle [2c+e,\,2d+f] \:=\:[1,\,1]\)

From [3]: .\(\displaystyle [2a+c+e,\,3b+d+f] \:=\:[0,\,\text{-}2] \)


We have a system of equations: .\(\displaystyle \begin{Bmatrix} a \;=\;1 \\ b \;=\;0 \\ 2c+e\;=\;1 \\ 2d+f \;=\;1 \\ 2a+c+e \;=\;0 \\ 2b+d+f \;=\;\text{-}2 \end{Bmatrix}\)

Solve the system: .\(\displaystyle \begin{Bmatrix}a\:=\:1 & b\:=\:0 \\ c\:=\:3 & d\:=\:3 \\ e\:=\:\text{-}5 & f\:=\:\text{-}5 \end{Bmatrix}\)


Therefore: .\(\displaystyle L \:=\:\begin{bmatrix}1&0 \\ 3&3 \\ \text{-}5 & \text{-}5 \end{bmatrix}\)

Am I close?
 
Top