Matrices, trees and contruction: Construct a stochastic matrix M containing the probabilities of...

MagdaLena

New member
Joined
May 23, 2023
Messages
2
I have this task:


The diagram below shows from which points (states) you can get to which.


(a) Construct a stochastic matrix M containing the probabilities of going from
from one point to others at random (see example from lecture).
(b) Determine the probability that, after four steps from vertex A, we find ourselves
find yourself at vertex B.
vertex B.
(c) Determine the largest real eigenvalue of the matrix M
(d) Determine the determinant of matrix M.


can you tell me how to start and how to solve it ?
 

Attachments

  • ga.jpg
    ga.jpg
    12.7 KB · Views: 3
(a) Construct a stochastic matrix M containing the probabilities of going from
from one point to others at random (see example from lecture).
(b) Determine the probability that, after four steps from vertex A, we find ourselves
find yourself at vertex B.
vertex B.
(c) Determine the largest real eigenvalue of the matrix M
(d) Determine the determinant of matrix M.


can you tell me how to start and how to solve it ?
A good way to start would probably be with the "example from lecture" that you were directed to review. Then also study the current section in your textbook, and re-read your class notes.

Then you can reply here with your thoughts and efforts so far, at which point the helpers can begin to work with you. Please be complete.

Thank you!

Eliz.
 
I have this task:


The diagram below shows from which points (states) you can get to which.


(a) Construct a stochastic matrix M containing the probabilities of going from
from one point to others at random (see example from lecture).
(b) Determine the probability that, after four steps from vertex A, we find ourselves
find yourself at vertex B.
vertex B.
(c) Determine the largest real eigenvalue of the matrix M
(d) Determine the determinant of matrix M.


can you tell me how to start and how to solve it ?
Are there probabilities assigned to each transition, or is it assumed that all transitions from the same point have the same probabilities? E.g., Probabilities of getting from B to E and to F are 1/2 each?
Thanks.
 
Top