Prove by mathematical induction that ½+cos(a)+…+cos(n-1)(a)=(sin(a/2)(2n-1))/(2sin(a/2))
I would personally lean more towards using a direct proof with complex series instead. Notice that \(\displaystyle \displaystyle \begin{align*} \mathrm{e}^{\mathrm{i}\,a} \equiv \cos{ \left( a \right) } + \mathrm{i}\sin{ \left( a \right) } \end{align*}\), that means we could write
\(\displaystyle \displaystyle \begin{align*} \sum_{k = 1}^{n-1} \left[ \left( \mathrm{e}^{\mathrm{i}\,a} \right)^k \right] &= \sum_{k = 1}^{n - 1} \cos{ \left( k\,a \right) } + \mathrm{i}\sum_{k = 1} \sin{ \left( k\,a \right) } \end{align*}\)
Notice that the LHS is a geometric series, with common ratio \(\displaystyle \displaystyle \begin{align*} \mathrm{e}^{\mathrm{i}\,a} \end{align*}\), thus its closed form solution is
\(\displaystyle \displaystyle \begin{align*} \sum_{k = 1}^{n-1} \left[ \left( \mathrm{e}^{\mathrm{i}\,a} \right) ^k \right] &= \frac{\mathrm{e}^{\mathrm{i}\,a} \, \left( 1 - \mathrm{e}^{\left( n - 1 \right) \, \mathrm{i}\,\mathrm{a} } \right)}{1 - \mathrm{e}^{\mathrm{i}\,a} } \\ &= \frac{\left[ \cos{ \left( a \right) } + \mathrm{i}\sin{ \left( a \right) } \right] \left\{ 1 - \cos{ \left[ \left( n - 1 \right) \, a \right] } - \mathrm{i}\sin{ \left[ \left( n - 1 \right) \, a \right] } \right\} }{1 - \cos{ \left( a \right) } - \mathrm{i}\sin{ \left( a \right) } } \end{align*}\)
with some simplification you would be able to write this in terms of its real and imaginary parts. I'd start by simplifying by multiplying the top and bottom by the bottom's conjugate. The real part is the series you are trying to find (at least once you add 1/2 to it). You might also need to apply some trigonometric identities.