Please reply
showing what you have done so far. For instance, my "for n = 1" step might look like this:
. . . . .\(\displaystyle \mbox{Let }\, n\, =\, 1.\, \mbox{ Then we have fractions with numerators}\)
. . . . .\(\displaystyle \mbox{from }\, n\, =\, 1\, \mbox{ through }\, 3n\, -\, 1\, =\, 3\, -\, 1\, =\, 2.\)
. . . . .\(\displaystyle \mbox{In other words, we need only the first two fractions:}\)
. . . . . . . .\(\displaystyle \dfrac{1}{2\, -\, 1}\, +\, \dfrac{1\, +\, 1}{2\, +\, 1}\, =\, \dfrac{1}{1}\, +\, \dfrac{2}{3}\, =\, \dfrac{5}{3}\)
. . . . .\(\displaystyle \mbox{The left-hand side inequality is:}\)
. . . . . . . .\(\displaystyle n\, =\, 1\, <\, \dfrac{5}{3}\)
. . . . .\(\displaystyle \mbox{So the left-hand inequality holds.}\)
. . . . .\(\displaystyle \mbox{The right-hand end's value is:}\)
. . . . . . . .\(\displaystyle 0.7\, +\, n\, =\, 0.7\, +\, 1\, =\, 1.7\, =\, \dfrac{17}{10}\)
. . . . .\(\displaystyle \mbox{Comparing the middle value with the right-hand end's, we get:}\)
. . . . . . . .\(\displaystyle \dfrac{5}{3}\, =\, \dfrac{50}{30}\, <\, \dfrac{51}{30}\, =\, \dfrac{17}{10}\)
. . . . .\(\displaystyle \mbox{So the right-hand inequality also holds.}\)
. . . . .\(\displaystyle \mbox{Thus, the statement holds for }\, n\, =\, 1.\)
And so forth. Please reply starting with your n = k + 1 statement, and then show your attempt at the proof. Thank you!