Hi chemmer,
you said that you weren't sure how the process of induction works.
I just want to add a little, though the procedure Soroban gave may be clear enough to you.
The given sum "appears to be" n(4n-3)/4.
If it is, then (n+1)(4[n+1]-3)/4 will sum the first n+1 terms.
This is (4n[sup:3ga5bd1y]2[/sup:3ga5bd1y]+4n-3n+4n+4-3)/4 = (4n[sup:3ga5bd1y]2[/sup:3ga5bd1y]+5n+1)/4.
If S[sub:3ga5bd1y]n[/sub:3ga5bd1y]+T[sub:3ga5bd1y]n+1[/sub:3ga5bd1y] is equal to the S[sub:3ga5bd1y]n+1[/sub:3ga5bd1y] above,
then S[sub:3ga5bd1y]2[/sub:3ga5bd1y]=S[sub:3ga5bd1y]1[/sub:3ga5bd1y]+T[sub:3ga5bd1y]2[/sub:3ga5bd1y], S[sub:3ga5bd1y]3[/sub:3ga5bd1y]=S[sub:3ga5bd1y]2[/sub:3ga5bd1y]+T[sub:3ga5bd1y]3[/sub:3ga5bd1y],
S[sub:3ga5bd1y]4[/sub:3ga5bd1y]=S[sub:3ga5bd1y]3[/sub:3ga5bd1y]+T[sub:3ga5bd1y]4[/sub:3ga5bd1y], S[sub:3ga5bd1y]5[/sub:3ga5bd1y]=S[sub:3ga5bd1y]4[/sub:3ga5bd1y]+T[sub:3ga5bd1y]5[/sub:3ga5bd1y] and on and on.
We check this by adding T[sub:3ga5bd1y]n+1[/sub:3ga5bd1y] to Sn,
n(4n-3)/4 + 2n+1/4 = (4n[sup:3ga5bd1y]2[/sup:3ga5bd1y]-3n+8n+1)/4 = (4n[sup:3ga5bd1y]2[/sup:3ga5bd1y]+5n+1)/4.
Therefore S[sub:3ga5bd1y]n[/sub:3ga5bd1y]+T[sub:3ga5bd1y]n+1[/sub:3ga5bd1y]=S[sub:3ga5bd1y]n+1[/sub:3ga5bd1y].
This now means that if S[sub:3ga5bd1y]1[/sub:3ga5bd1y]=1(4[1]-3)/4,
then S[sub:3ga5bd1y]2[/sub:3ga5bd1y] will be S[sub:3ga5bd1y]1[/sub:3ga5bd1y]+T[sub:3ga5bd1y]2[/sub:3ga5bd1y] which is n(4n-3)/4 with n=2,
S[sub:3ga5bd1y]3[/sub:3ga5bd1y] will be S[sub:3ga5bd1y]2[/sub:3ga5bd1y]+T[sub:3ga5bd1y]3[/sub:3ga5bd1y] which is n(4n-3)/4 with n=3,
and in general S[sub:3ga5bd1y]n[/sub:3ga5bd1y]=n(4n-3)/4 for the given series.