Are you familiar with the Induction procedure?
If so, which stage is giving you trouble?
Prove, by induction, that: \(\displaystyle \:\left(\frac{a+b}{2}\right)^n\:<\:\frac{a^n+b^n}{2}\:\) where \(\displaystyle a\,>\,b\,>\,0\) and \(\displaystyle n \,= \,2,\,3,\,4,\,...\)
For \(\displaystyle n\,=\,2:\) . . The left side is: \(\displaystyle \:\left(\frac{a+b}{2}\right)^2 \:=\:\frac{1}{4}\left(a^2\,+\,2ab\,+\,b^2\right)\) . . The right side is: \(\displaystyle \:\frac{a^2\,+\,b^2}{2}\)
Is the left side smaller?
We have: \(\displaystyle \:\frac{a^2\,+\,2ab\,+\,b^2}{4}\;\;{\begin{array}{c}<\\>\end{array} \;\;\frac{a^2\,+\,b^2}{2}\)
Multiply by 4: \(\displaystyle \:a^2\,+\,2ab\,+\,b^2\;\;\begin{array}{c}<\\>\end{array}\;\;2a^2\,+\,2b^2\)
Then we have: \(\displaystyle \:0 \;\;\begin{array}{c}<\\>\end{array}\;\;a^2\,-\,2ab\,+\,b^2\)
This site uses cookies to help personalise content, tailor your experience and to keep you logged in if you register.
By continuing to use this site, you are consenting to our use of cookies.