math

Hello, Guest!

Here it is in baby-steps . . .

What does 3214+1234\displaystyle 321_4\,+\,123_4 equal?
      a  b  c\displaystyle \;\;\;a\;b\;c
      3  2  1\displaystyle \;\;\;3\;2\;1
      1  2  3\displaystyle \;\;\;1\;2\;3
    \displaystyle \;\;----

In column c\displaystyle c, we have: 1+3  =  10    (4)\displaystyle \,1\,+\,3\;=\;10\;\;('4')
We "put down the 0, carry the 1".
      a  b  c\displaystyle \;\;\;a\;b\;c
      3  211\displaystyle \;\;\;3\;2^{^1}\,1
      1  2  3\displaystyle \;\;\;1\;2\;3
    \displaystyle \;\;----
              0\displaystyle \;\;\;\;\;\;\;0

In column b\displaystyle b, we have: 2+2+1=11    (5)\displaystyle \,2\,+\,2\,+\,1\:=\:11\;\;('5')
"Put down the 1, carry the 1".

      a  b  c\displaystyle \;\;\;a\;b\;c
      312  1\displaystyle \;\;\;3^{^1}\,2\;1
      1  2  3\displaystyle \;\;\;1\;2\;3
    \displaystyle \;\;----
          1  0\displaystyle \;\;\;\;\;1\;0

In column a\displaystyle a, we have: 3+1+1=11    (5)\displaystyle \,3\,+\,1\,+\,1\:=\:11\;\;('5')
Write down the entire 11\displaystyle 11.

      a  b  c\displaystyle \;\;\;a\;b\;c
      3  2  1\displaystyle \;\;\;3\;2\;1
      1  2  3\displaystyle \;\;\;1\;2\;3
    \displaystyle \;\;----
  1  1  1  0\displaystyle \;1\;1\;1\;0


Therefore: 3214+m1234=11104\displaystyle \,321_4\,+\,m123_4\:=\:1110_4


~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

If you're desperate, change the problem to base-10,
    \displaystyle \;\;do the addition, then change back to base-4.

      3214  =  57\displaystyle \;\;\;321_4\;=\;57
      1234  =  27\displaystyle \;\;\;123_4\;=\;27
. . . . . . . . . .\displaystyle \,--
. . . . . . . . . . .84  =  11104\displaystyle 84\;=\;1110_4
 
Top