what is321 base 4 + 123 base 4 equal?
D daon Senior Member Joined Jan 27, 2006 Messages 1,284 Apr 9, 2006 #2 Anonymous said: what is321 base 4 + 123 base 4 equal? Click to expand... 321+123 = 1110
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Apr 10, 2006 #3 Hello, Guest! Here it is in baby-steps . . . What does 3214 + 1234\displaystyle 321_4\,+\,123_43214+1234 equal? Click to expand... a b c\displaystyle \;\;\;a\;b\;cabc 3 2 1\displaystyle \;\;\;3\;2\;1321 1 2 3\displaystyle \;\;\;1\;2\;3123 −−−−\displaystyle \;\;----−−−− In column c\displaystyle cc, we have: 1 + 3 = 10 (′4′)\displaystyle \,1\,+\,3\;=\;10\;\;('4')1+3=10(′4′) We "put down the 0, carry the 1". a b c\displaystyle \;\;\;a\;b\;cabc 3 21 1\displaystyle \;\;\;3\;2^{^1}\,13211 1 2 3\displaystyle \;\;\;1\;2\;3123 −−−−\displaystyle \;\;----−−−− 0\displaystyle \;\;\;\;\;\;\;00 In column b\displaystyle bb, we have: 2 + 2 + 1 = 11 (′5′)\displaystyle \,2\,+\,2\,+\,1\:=\:11\;\;('5')2+2+1=11(′5′) "Put down the 1, carry the 1". a b c\displaystyle \;\;\;a\;b\;cabc 31 2 1\displaystyle \;\;\;3^{^1}\,2\;13121 1 2 3\displaystyle \;\;\;1\;2\;3123 −−−−\displaystyle \;\;----−−−− 1 0\displaystyle \;\;\;\;\;1\;010 In column a\displaystyle aa, we have: 3 + 1 + 1 = 11 (′5′)\displaystyle \,3\,+\,1\,+\,1\:=\:11\;\;('5')3+1+1=11(′5′) Write down the entire 11\displaystyle 1111. a b c\displaystyle \;\;\;a\;b\;cabc 3 2 1\displaystyle \;\;\;3\;2\;1321 1 2 3\displaystyle \;\;\;1\;2\;3123 −−−−\displaystyle \;\;----−−−− 1 1 1 0\displaystyle \;1\;1\;1\;01110 Therefore: 3214 + m1234 = 11104\displaystyle \,321_4\,+\,m123_4\:=\:1110_43214+m1234=11104 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ If you're desperate, change the problem to base-10, \displaystyle \;\;do the addition, then change back to base-4. 3214 = 57\displaystyle \;\;\;321_4\;=\;573214=57 1234 = 27\displaystyle \;\;\;123_4\;=\;271234=27 . . . . . . . . . . −−\displaystyle \,--−− . . . . . . . . . . .84 = 11104\displaystyle 84\;=\;1110_484=11104
Hello, Guest! Here it is in baby-steps . . . What does 3214 + 1234\displaystyle 321_4\,+\,123_43214+1234 equal? Click to expand... a b c\displaystyle \;\;\;a\;b\;cabc 3 2 1\displaystyle \;\;\;3\;2\;1321 1 2 3\displaystyle \;\;\;1\;2\;3123 −−−−\displaystyle \;\;----−−−− In column c\displaystyle cc, we have: 1 + 3 = 10 (′4′)\displaystyle \,1\,+\,3\;=\;10\;\;('4')1+3=10(′4′) We "put down the 0, carry the 1". a b c\displaystyle \;\;\;a\;b\;cabc 3 21 1\displaystyle \;\;\;3\;2^{^1}\,13211 1 2 3\displaystyle \;\;\;1\;2\;3123 −−−−\displaystyle \;\;----−−−− 0\displaystyle \;\;\;\;\;\;\;00 In column b\displaystyle bb, we have: 2 + 2 + 1 = 11 (′5′)\displaystyle \,2\,+\,2\,+\,1\:=\:11\;\;('5')2+2+1=11(′5′) "Put down the 1, carry the 1". a b c\displaystyle \;\;\;a\;b\;cabc 31 2 1\displaystyle \;\;\;3^{^1}\,2\;13121 1 2 3\displaystyle \;\;\;1\;2\;3123 −−−−\displaystyle \;\;----−−−− 1 0\displaystyle \;\;\;\;\;1\;010 In column a\displaystyle aa, we have: 3 + 1 + 1 = 11 (′5′)\displaystyle \,3\,+\,1\,+\,1\:=\:11\;\;('5')3+1+1=11(′5′) Write down the entire 11\displaystyle 1111. a b c\displaystyle \;\;\;a\;b\;cabc 3 2 1\displaystyle \;\;\;3\;2\;1321 1 2 3\displaystyle \;\;\;1\;2\;3123 −−−−\displaystyle \;\;----−−−− 1 1 1 0\displaystyle \;1\;1\;1\;01110 Therefore: 3214 + m1234 = 11104\displaystyle \,321_4\,+\,m123_4\:=\:1110_43214+m1234=11104 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ If you're desperate, change the problem to base-10, \displaystyle \;\;do the addition, then change back to base-4. 3214 = 57\displaystyle \;\;\;321_4\;=\;573214=57 1234 = 27\displaystyle \;\;\;123_4\;=\;271234=27 . . . . . . . . . . −−\displaystyle \,--−− . . . . . . . . . . .84 = 11104\displaystyle 84\;=\;1110_484=11104