Math riddle for true experts

Sroly

New member
Joined
Jan 13, 2014
Messages
1
5-3
)50.5-30.5)(50.5+30.5)=5-3
(50.25-30.25)(50.25+30.25) (50.5+30.5)=5-3
(51/∞-31/∞)(51/∞+31/∞)….(50.25+30.25)(50.25+30.25) (50.5+30.5)=5-3
(51/∞-31/∞)=50-30=1-1=0
5-3=0
????
 
5-3
)50.5-30.5)(50.5+30.5)=5-3 True
(50.25-30.25)(50.25+30.25) (50.5+30.5)=5-3 True
(51/∞-31/∞)(51/∞+31/∞)….(50.25+30.25)(50.25+30.25) (50.5+30.5)=5-3
(51/∞-31/∞)=50-30=1-1=0 Now you have gone off the rails by treating infinity as a finite number. See below.
5-3=0
????
nZ and n>0    (5(1/2)n3(1/2)n))i=1n(5(1/2)i+3(1/2)i)=53=2.\displaystyle \displaystyle n \in \mathbb Z\ and\ n > 0 \implies \left(5^{(1/2)^n} - 3^{(1/2)^n)}\right) * \prod_{i = 1}^n\left(5^{(1/2)^i} + 3^{(1/2)^i}\right) = 5 - 3 = 2.

So limn{(5(1/2)n3(1/2)n))i=1n(5(1/2)i+3(1/2)i)}=limn(2)=2.\displaystyle \displaystyle So\ \lim_{n \rightarrow \infty}\left\{\left(5^{(1/2)^n} - 3^{(1/2)^n)}\right) * \prod_{i = 1}^n\left(5^{(1/2)^i} + 3^{(1/2)^i}\right)\right\} = \lim_{n \rightarrow \infty} (2) = 2.

But you say, and truly, limn(5(1/2)n3(1/2)n))=0 and 0 times any finite number=02.\displaystyle \displaystyle \lim_{n \rightarrow \infty}\left(5^{(1/2)^n} - 3^{(1/2)^n)}\right) = 0\ and\ 0\ times\ any\ finite\ number = 0 \ne 2.

However, limn{(5(1/2)n3(1/2)n))i=1n(5(1/2)i+3(1/2)i)}=limn(5(1/2)n3(1/2)n))limni=1n(5(1/2)i+3(1/2)i).\displaystyle \displaystyle \lim_{n \rightarrow \infty}\left\{\left(5^{(1/2)^n} - 3^{(1/2)^n)}\right) * \prod_{i = 1}^n\left(5^{(1/2)^i} + 3^{(1/2)^i}\right)\right\} = \lim_{n \rightarrow \infty}\left(5^{(1/2)^n} - 3^{(1/2)^n)}\right) * \lim_{n \rightarrow \infty} \prod_{i = 1}^n\left(5^{(1/2)^i} + 3^{(1/2)^i}\right).

And limni=1n(5(1/2)i+3(1/2)i)=.\displaystyle \displaystyle\lim_{n \rightarrow \infty} \prod_{i = 1}^n\left(5^{(1/2)^i} + 3^{(1/2)^i}\right) = \infty.

0=2\displaystyle 0 * \infty = 2 is true. You are not multiplying 0 times a finite quantity.

How do we know that limni=1n(5(1/2)i+3(1/2)i)=.\displaystyle \displaystyle\lim_{n \rightarrow \infty} \prod_{i = 1}^n\left(5^{(1/2)^i} + 3^{(1/2)^i}\right) = \infty.

5(1/2)i>1<3(1/2)i    5(1/2)i+3(1/2)i>2    \displaystyle 5^{(1/2)^i} > 1 < 3^{(1/2)^i} \implies 5^{(1/2)^i} + 3^{(1/2)^i} > 2 \implies

i=1n(5(1/n)i+3(1/n)i)>2n    \displaystyle \displaystyle \prod_{i = 1}^n\left( 5^{(1/n)^i} + 3^{(1/n)^i}\right) > 2^n \implies

limni=1n(5(1/n)i+3(1/n)i)limn2n=.\displaystyle \displaystyle \lim_{n \rightarrow \infty} \prod_{i = 1}^n\left( 5^{(1/n)^i} + 3^{(1/n)^i}\right) \ge \lim_{n \rightarrow \infty}2^n = \infty.
 
Last edited:
Top