Hello, kirishi!
i got wat u ment on #5.
5. Find the area of the triangle formed by the three points on the curve \(\displaystyle \L y\:=\:\left(\frac{x^2\,-\,1}{x^2\,+\,1\right)^2\)
where the slopes of the tangent lines to the curve at those points are zero.
u need the derivative.
\(\displaystyle \L\frac{dy}{dx}\;=\;2\left(\frac{x^2\,-\,1}{x^2\,+\,1}\right)\cdot\frac{(x^2+1)\cdot2x\,-\,(x^2-1)\cdot2x}{(x^2+1)^2}\;=\;\frac{8x(x^2-1)}{(x^2+1)^2}\)
We want slope 0 so we noe that: \(\displaystyle \,8x(x^2-1)\,=\,0\;\;\Rightarrow\;\;x\,=\,0,\pm1\)
When \(\displaystyle x\,=\,0,\,y\,=\,1\)
When \(\displaystyle x\,=\,1,\,y\,=\,0\)
When \(\displaystyle x\,=\,-1,\,y\,=\,0\)
Plot the three points: \(\displaystyle \,(0,1),\
1,0),\
-1,0)\)
We have a triangle wid base = 2 and height = 1.
\(\displaystyle \text{Area }=\,\frac{1}{2}(2)(1)\:=\:1\)