Maclaurin series problems

sheilaw

New member
Joined
Jun 29, 2009
Messages
16
1. Deduce from the Maclaurin series for e^t that
1/x^x= the sum from 0 to infinite of [(-1)^n * (xInx)^n]/n!

2. use the fact that for any positive integers m and n
integral from 0 to 1 of x^m(Inx)^ndx=n!(-1)^n/(m+1)^(n+1) to show that integral from 0 to 1 of dx/x^x =sum form 1 to infinite of 1/n^n

For the #1 question, I found that e^x= the sum from 0 to infinite of x^n /n!, is infinite of x^n /n! =the sum from 0 to infinite of [(-1)^n * (xInx)^n]/n!?
then slove the x?
I dont no how to start #2, anyone help me? Thanks a lot
 
1xx=xx=eln(xx)=exlnx=n=0(xlnx)nn!=n=0(1)n(xlnx)nn!\displaystyle \frac{1}{x^x} = x^{-x} = e^{ln(x^{-x})} = e^{-xlnx} = \sum_{n=0}^{\infty} \frac{(-xlnx)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n(xlnx)^n}{n!}

For 2, Let m=n Then

01xm(lnx)ndx=01(xlnx)ndx=(1)nn!(n+1)(n+1)\displaystyle \int_0^1 x^m(lnx)^ndx = \int_0^1 (xlnx)^ndx = (-1)^n\frac{n!}{(n+1)^{(n+1)}}

Dividing both sides by the numberator on the RHS:

01(1)n(xlnx)nn!dx=1(n+1)(n+1)\displaystyle \int_0^1(-1)^n \frac{(xlnx)^n}{n!}dx = \frac{1}{(n+1)^{(n+1)}}

Since these are equal we know:

n=001(1)n(xlnx)nn!dx=n=01(n+1)(n+1)\displaystyle \sum_{n=0}^{\infty} \int_0^1(-1)^n \frac{(xlnx)^n}{n!}dx = \sum_{n=0}^{\infty} \frac{1}{(n+1)^{(n+1)}}

The RHS sum's index can be incremented. Can you take it from here?
 
i didnt get the part of Dividing both sides by the numberator on the RHS....why they will equals?
 
sheilaw said:
i didnt get the part of Dividing both sides by the numberator on the RHS....why they will equals?

Back to the basics. nN\displaystyle n\in N is a constant at this point. That is, it is a set number, like 3, but in general stands for any specific positive number.

If we know, for instance, 2x2=4\displaystyle 2x^2 = 4, then if we do equivilant, valid algebraic operations to both sides, they will remain equal. Thus 2x22=42\displaystyle \frac{2x^2}{2} = \frac{4}{2}. This will work for any non-zero number n\displaystyle n, or any non-zero value whatsoever. That is, if g(n)\displaystyle g(n) is a function g\displaystyle g evaluated at a number n\displaystyle n and is non-zero, then 2x2g(n)=4g(n)\displaystyle \frac{2x^2}{g(n)} = \frac{4}{g(n)}. This is why equations are often compared with balance-beams. You may remove or add the same weight to both sides of a balanced beam and it will remain balanced.



We have f(x)dx=(1)nn!\displaystyle \int f(x)dx = \frac{(-1)^nn!}{\dots}

We can divide both sides by (1)nn!\displaystyle (-1)^nn!

f(x)(1)nn!=(1)nn!(1)nn!\displaystyle \frac{\int f(x)}{(-1)^nn!} = \frac{\frac{(-1)^nn!}{\dots}}{(-1)^nn!}

    f(x)(1)nn!=1\displaystyle \implies \int \frac{f(x)}{(-1)^nn!} = \frac{1}{\dots}

Again, n is aconstant. Constants may be moved into/out of integrals.

Final note: 1(1)n=(1)n\displaystyle \frac{1}{(-1)^n} = (-1)^n
 
01xm[ln(x)]ndx = (1)nn!(m+1)(n+1)\displaystyle \int_{0}^{1}x^{m}[ln(x)]^{n}dx \ = \ \frac{(-1)^{n}n!}{(m+1)^{(n+1)}}

For example: 01x7[ln(x)]10dx = 1417533554432 = (1)10(10!)811.\displaystyle For \ example: \ \int_{0}^{1}x^{7}[ln(x)]^{10}dx \ = \ \frac{14175}{33554432} \ = \ \frac{(-1)^{10}(10!)}{8^{11}}.

When I plugged the above integral into my trusty TI89, it went into busy mode for about\displaystyle When \ I \ plugged \ the \ above \ integral \ into \ my \ trusty \ TI-89, \ it \ went \ into \ busy \ mode \ for \ about

 at least two hours or more, before spitting out the answer. I then plugged in the RHS of the\displaystyle \ at \ least \ two \ hours \ or \ more, \ before \ spitting \ out \ the \ answer. \ I \ then \ plugged \ in \ the \ RHS \ of \ the

 equation, and it gave me the answer practically simultaneously.\displaystyle \ equation, \ and \ it \ gave \ me \ the \ answer \ practically \ simultaneously.

The secret here, is when evaluating the integral, if you were demented enough to so attempt, is\displaystyle The \ secret \ here, \ is \ when \ evaluating \ the \ integral, \ if \ you \ were \ demented \ enough \ to \ so \ attempt, \ is

to note when using integration by parts, (udv = uv  vdu),the uv always goes to zero,\displaystyle to \ note \ when \ using \ integration \ by \ parts, \ (\int udv \ = \ uv \ - \ \int vdu), the \ uv \ always \ goes \ to \ zero,

leaving one to only worry about the end integral.\displaystyle leaving \ one \ to \ only \ worry \ about \ the \ end \ integral.

Note also that the exponent on x is constant, the problem being the exponent on [ln(x)].\displaystyle Note \ also \ that \ the \ exponent \ on \ x \ is \ constant, \ the \ problem \ being \ the \ exponent \ on \ [ln(x)].

Knowing that,01x7[ln(x)]10dx = (108)(98)(88)(78)(68)(58)(48)(38)(28)(18)01x7dx.\displaystyle Knowing \ that,\int_{0}^{1}x^{7}[ln(x)]^{10}dx \ = \ (\frac{-10}{8})(\frac{-9}{8})(\frac{-8}{8})(\frac{-7}{8})(\frac{-6}{8})(\frac{-5}{8})(\frac{-4}{8})(\frac{-3}{8})(\frac{-2}{8})(\frac{-1}{8})\int_{0}^{1}x^{7}dx.

This gives us (1)10(10!)811 = 1417533554432.\displaystyle This \ gives \ us \ \frac{(-1)^{10}(10!)}{8^{11}} \ = \ \frac{14175}{33554432}.

Hence, very clever.\displaystyle Hence, \ very \ clever.
 
Top