How can I prove that P OR (Q AND P) <=> P without using truth tables?
P pip1 New member Joined Dec 5, 2006 Messages 4 Dec 5, 2006 #1 How can I prove that P OR (Q AND P) <=> P without using truth tables?
pka Elite Member Joined Jan 29, 2005 Messages 11,976 Dec 6, 2006 #2 This can be done by the technique known as ‘Indirect Proof’. Assume not P and get a contradiction.
pka Elite Member Joined Jan 29, 2005 Messages 11,976 Dec 6, 2006 #4 \(\displaystyle \begin{array}{l} P \vee \left( {P \wedge Q} \right)\quad \mbox{given} \\ \neg P\quad \mbox{indirect proof}\\ P \wedge Q\quad \mbox{disjunction} \\ P\quad \mbox{simplification} \\ P \wedge \neg P\quad \mbox{conjunction} \\ P\quad \mbox{contradiction} \\ \end{array}\) \(\displaystyle \begin{array}{l} P \quad \mbox{given}\\ P \vee \left( {P \wedge Q} \right) \quad \mbox{disjunction}\\ \end{array}\)
\(\displaystyle \begin{array}{l} P \vee \left( {P \wedge Q} \right)\quad \mbox{given} \\ \neg P\quad \mbox{indirect proof}\\ P \wedge Q\quad \mbox{disjunction} \\ P\quad \mbox{simplification} \\ P \wedge \neg P\quad \mbox{conjunction} \\ P\quad \mbox{contradiction} \\ \end{array}\) \(\displaystyle \begin{array}{l} P \quad \mbox{given}\\ P \vee \left( {P \wedge Q} \right) \quad \mbox{disjunction}\\ \end{array}\)