I'm left with three logarithms unsolved :evil:
1) \(\displaystyle 4^x=5*2^{x-1}-1\)
2) \(\displaystyle 2^x-3+2*2^{-x}=0\)
3) \(\displaystyle 8x=x^{\log_8{x^{12}}}\)
four, actually... :twisted:
4) \(\displaystyle \log_4{x}-1=\frac{2}{\log_4{x}}\)
1) \(\displaystyle 4^x=5*2^{x-1}-1\)
2) \(\displaystyle 2^x-3+2*2^{-x}=0\)
3) \(\displaystyle 8x=x^{\log_8{x^{12}}}\)
four, actually... :twisted:
4) \(\displaystyle \log_4{x}-1=\frac{2}{\log_4{x}}\)