Determine the local extrema, inflection points, and all asymptotes of reach function.
\(\displaystyle \L\ y= x - e^{x}\)
local extrema
\(\displaystyle \L\ y'= 1- e^{x}\)
\(\displaystyle \L\ 0= 1- e^{x}\)
\(\displaystyle \L\ -1=- e^{x}\)
\(\displaystyle \L\ ln(-1)=ln(-e^{x})\)
\(\displaystyle \L\ ln(-1)=xln(-e)\)
\(\displaystyle \L\frac{ln(-1)}{ln(e)}=x\)
\(\displaystyle \L\frac{ln(-1)}{1}=x\)
\(\displaystyle \L\ 3.14159265=x\) ( does that equal pi?)
inflection points
set up a chart
asymptotes
vetical=no
horizontal= ...how do i do this?
oblique= no
\(\displaystyle \L\ y= x - e^{x}\)
local extrema
\(\displaystyle \L\ y'= 1- e^{x}\)
\(\displaystyle \L\ 0= 1- e^{x}\)
\(\displaystyle \L\ -1=- e^{x}\)
\(\displaystyle \L\ ln(-1)=ln(-e^{x})\)
\(\displaystyle \L\ ln(-1)=xln(-e)\)
\(\displaystyle \L\frac{ln(-1)}{ln(e)}=x\)
\(\displaystyle \L\frac{ln(-1)}{1}=x\)
\(\displaystyle \L\ 3.14159265=x\) ( does that equal pi?)
inflection points
set up a chart
asymptotes
vetical=no
horizontal= ...how do i do this?
oblique= no