Soroban gave you the right answer of course, but he did not explain two critical steps.
You properly SIMPLIFIED log[sub:16o7jmbj]10[/sub:16o7jmbj](x) + log[sub:16o7jmbj]10[/sub:16o7jmbj](x - 21) to log[sub:16o7jmbj]10[/sub:16o7jmbj](x[sup:16o7jmbj]2[/sup:16o7jmbj] - 21x).
You cannot, however, say 2 = 100 just because 2 = log[sub:16o7jmbj]10[/sub:16o7jmbj](100). 2 NEVER equals 100.
So, the equation you SHOULD have come up with was log[sub:16o7jmbj]10[/sub:16o7jmbj](x[sup:16o7jmbj]2[/sup:16o7jmbj] - 21x) = 2 = log[sub:16o7jmbj]10[/sub:16o7jmbj](100).
Now, and this is a critical step. If log[sub:16o7jmbj]b[/sub:16o7jmbj](z) = log[sub:16o7jmbj]b[/sub:16o7jmbj](y), then z = y. Note it is NOT generally true that if log[sub:16o7jmbj]c[/sub:16o7jmbj](z) = log[sub:16o7jmbj]d[/sub:16o7jmbj](y), then y = z. The bases must be the same.
So, from log[sub:16o7jmbj]10[/sub:16o7jmbj](x[sup:16o7jmbj]2[/sup:16o7jmbj] - 21x) = log[sub:16o7jmbj]10[/sub:16o7jmbj](100), you can eliminate the log function from both sides of the equation and get x[sup:16o7jmbj]2[/sup:16o7jmbj] - 21x = 100.
Now you can factor or complete the square or factor to your heart's content. And you can check your work.
log[sub:16o7jmbj]10[/sub:16o7jmbj](25) + log[sub:16o7jmbj]10[/sub:16o7jmbj](25 - 21) = log[sub:16o7jmbj]10[/sub:16o7jmbj](25) + log[sub:16o7jmbj]10[/sub:16o7jmbj](4) = log[sub:16o7jmbj]10[/sub:16o7jmbj](25 * 4) = log[sub:16o7jmbj]10[/sub:16o7jmbj](100) = 2.
All clear now?
PS Soroban also did not explain why x = - 4 is not a valid answer. Do you know why?