Logarithmic Differentiation

cv2yanks13

New member
Joined
Mar 17, 2010
Messages
13
Find the derivative of each of the functions listed below (with no negative exponents). You can leave all denominators in factored form (i.e you do not want to distribute the denominator)

a) ln(sqr(1+x)/(x^2+2)^3)

b) y= x^3(x-2)^4/sqr(x+1)

c) y=x^sinx
 
What, did you have a sking accident? Are both of your arms in a sling?\displaystyle What, \ did \ you \ have \ a \ sking \ accident? \ Are \ both \ of \ your \ arms \ in \ a \ sling?
 
sorry.. I'm just having a really hard time understanding this... i'm looking for some help :(
 
a) f(x) = ln[1x1/2(x2+2)3] = ln1x1/2ln(x2+2)3\displaystyle a) \ f(x) \ = \ ln\bigg[\frac{|1-x|^{1/2}}{(x^{2}+2)^{3}}\bigg] \ = \ ln|1-x|^{1/2}-ln(x^{2}+2)^{3}

= 12ln1x3ln(x2+2)\displaystyle = \ \frac{1}{2}ln|1-x|-3ln(x^{2}+2)

Hence, f(x) = 12(11x)3(2xx2+2) = 12x26xx2+2\displaystyle Hence, \ f'(x) \ = \ \frac{1}{2}\bigg(\frac{-1}{1-x}\bigg)-3\bigg(\frac{2x}{x^{2}+2}\bigg) \ = \ \frac{1}{2x-2}-\frac{6x}{x^{2}+2}

c) y = xsin(x)\displaystyle c) \ y \ = \ x^{sin(x)}

lny = lnxsin(x), take log of both sides\displaystyle ln|y| \ = \ ln|x^{sin(x)}|, \ take \ log \ of \ both \ sides

lny = sin(x)lnx, property of logs\displaystyle ln|y| \ = \ sin(x)ln|x|, \ property \ of \ logs

yy = cos(x)lnx+sin(x)/x, implicit differentation\displaystyle \frac{y'}{y} \ = \ cos(x)ln|x|+sin(x)/x, \ implicit \ differentation

y = y[cos(x)lnx+sin(x)/x]\displaystyle y' \ = \ y[cos(x)ln|x|+sin(x)/x]

y = xsin(x)[cos(x)lnx+sin(x)/x], resub.\displaystyle y' \ = \ x^{sin(x)}[cos(x)ln|x|+sin(x)/x], \ resub.

Note: The sticking point here is one should have a good grasp of log properties.\displaystyle Note: \ The \ sticking \ point \ here \ is \ one \ should \ have \ a \ good \ grasp \ of \ log \ properties.
 
Top