Logarithm Q: 4log base3 (2x+1) - 1/2log base 3 (3x-4) -....

currypuff

New member
Joined
Jan 17, 2008
Messages
3
Please help me to solve this problem:

Express as one logarithm: 4log base3 (2x+1) - 1/2log base 3 (3x-4) - log base7 (x+1)

Your help is greatly appreciated.
 
Re: Logarithm Question

\(\displaystyle 4\log_3(2x+1) - \frac{1}{2} \log_3(3x-4) - \log_7(x+1)\)

start by changing the log base 7 to log base 3 ...

\(\displaystyle 4\log_3(2x+1) - \frac{1}{2} \log_3(3x-4) - \frac{\log_3(x+1)}{\log_3{7}}\)

use the power property for logs ...

\(\displaystyle \log_3(2x+1)^4 - \log_3 \sqrt{3x-4} - \log_3(x+1)^{\frac{1}{\log_3{7}}\)

combine the base 3 logs using the quotient property for logs ...

\(\displaystyle \log_3 \left(\frac{(2x+1)^4}{\sqrt{3x-4} \cdot (x+1)^{\frac{1}{\log_3{7}}}} \right)\)
 
Top