logarithm eqn: need help w/ log_x(64) + log_8x(32) = 4

Re: logarithm ...

the typeset of the equation is not really clear ... is the equation

log(x64)+log(8x32)=4\displaystyle \log(x^{64}) + \log(8x^{32}) = 4

or

logx(64)+log8x(32)=4\displaystyle \log_x(64) + \log_{8x}(32) = 4

or something else?
 
Re: logarithm ...

im not sure, i just copied it from my book..
here's another example, i know you can change the bases to Log _2 but im wondering what i did wrong in my way.
(it's not related to the problem above)

2008817_19211626746_Capture.PNG
 
Re: logarithm ...

seems more likely that it's

logx(64)+log8x(32)=4\displaystyle \log_x(64) + \log_{8x}(32) = 4

change to base 2 ...

log2(64)log2(x)+log2(32)log2(8x)=4\displaystyle \frac{\log_2(64)}{\log_2(x)} + \frac{\log_2(32)}{\log_2(8x)} = 4

6log2(x)+5log2(8)+log2(x)=4\displaystyle \frac{6}{\log_2(x)} + \frac{5}{\log_2(8) + \log_2(x)} = 4

6log2(x)+53+log2(x)=4\displaystyle \frac{6}{\log_2(x)} + \frac{5}{3 + \log_2(x)} = 4

let
t=log2(x)\displaystyle t = \log_2(x)

6t+53+t=4\displaystyle \frac{6}{t} + \frac{5}{3 + t} = 4

6(3+t)t(3+t)+5tt(3+t)=4\displaystyle \frac{6(3 + t)}{t(3 + t)} + \frac{5t}{t(3 + t)} = 4

18+11tt(3+t)=4\displaystyle \frac{18+11t}{t(3+t)} = 4

18+11t=12t+4t2\displaystyle 18+11t = 12t + 4t^2

0=4t2+t18\displaystyle 0 = 4t^2 + t - 18

0=(t2)(4t+9)\displaystyle 0 = (t-2)(4t+9)

t=2\displaystyle t = 2
x=4\displaystyle x = 4

t=94\displaystyle t = -\frac{9}{4}
x=294\displaystyle x = 2^{-\frac{9}{4}} ... throw this solution out, base x must be > 0.
 
Re: logarithm ...

Thanks skeeter.
About the other one, i know i can change to base 2 , but im trying to solve it in another way, can you see what im doing wrong?
 
Re: logarithm ...

log2(x)+log2x(x3)=4\displaystyle \log_2(x) + \log_{2x}(x^3) = 4

log2(x)+log2(x3)log2(2x)=4\displaystyle \log_2(x) + \frac{\log_2(x^3)}{\log_2(2x)} = 4

log2(x)+3log2(x)log2(2)+log2(x)=4\displaystyle \log_2(x) + \frac{3\log_2(x)}{\log_2(2) + \log_2(x)} = 4

let
t=log2(x)\displaystyle t = \log_2(x)

t+3t1+t=4\displaystyle t + \frac{3t}{1+t} = 4

take it from here?
 
Re: logarithm ...

thanks skeeter for your help!
but im trying to solve it without changing the bases (see picture above) and trying to figure out what i did wrong.
Is it even possible to solve it without changing the bases to Log_2 ?
 
Re: logarithm ...

Hello, oded244!

logx(64)+log8x(32)  =  4\displaystyle \log_x(64) + \log_{8x}(32) \;=\;4

We have:   logx(26)+log8x(25)  =  46logx(2)+5log8x(2)  =  4\displaystyle \text{We have: }\;\log_x(2^6) + \log_{8x}(2^5) \;=\;4 \quad\Rightarrow\quad 6\log_x(2) + 5\log_{8x}(2) \;=\;4

. . 6log2(x)+5log2(8x)  =  46log2(8x)+5log2(x)  =  4log2(x)log2(8x)\displaystyle \frac{6}{\log_2(x)} + \frac{5}{\log_2(8x)} \;=\;4 \quad\Rightarrow\quad 6\log_2(8x) + 5\log_2(x) \;=\;4\log_2(x)\log_2(8x)

. . 6[log2(8)+log2(x)]+5log2(x)  =  4log2(x)[log2(8)+log2(x)]\displaystyle 6\bigg[\log_2(8) + \log_2(x)\bigg] + 5\log_2(x) \;=\;4\log_2(x)\bigg[\log_2(8) + \log_2(x)\bigg]

. . 63+6log2(x)+5log2(x)  =  4log2(x)[3+log2(x)]\displaystyle 6\cdot 3 + 6\log_2(x) + 5\log_2(x) \;=\;4\log_2(x)\bigg[3 + \log_2(x)\bigg]

. . 18+11log2(x)  =  12log2(x)+4[log2(x)]2\displaystyle 18 + 11\log_2(x) \;=\;12\log_2(x) + 4\left[\log_2(x)\right]^2


We have the quadratic:   4[log2(x)]2+log2(x)18  =  0\displaystyle \text{We have the quadratic: }\;4\left[\log_2(x)\right]^2 + \log_2(x) - 18 \;=\;0

. . which factors:   [4log2(x)+9][log2(x)2]  =  0\displaystyle \text{which factors: }\;\left[4\log_2(x) + 9\right]\left[\log_2(x) - 2\right] \;=\;0


Therefore . . .

4log2(x)+9=0log2(x)=94x  =  294\displaystyle 4\log_2(x) + 9 \:=\:0 \quad\Rightarrow\quad \log_2(x) \:=\:-\frac{9}{4} \quad\Rightarrow\quad\boxed{ x \;=\;2^{-\frac{9}{4}}}

log2(x)2=0log2(x)=2x=22x=4\displaystyle \log_2(x) - 2 \:=\:0 \quad\Rightarrow\quad \log_2(x) \:=\:2 \quad\Rightarrow\quad x \:=\:2^2 \quad\Rightarrow\quad\boxed{x\:=\:4}

 
Re: logarithm ...

Hello again, oded244!

log2(x)+log2x(x3)  =  4\displaystyle \log_2(x) + \log_{2x}(x^3) \;=\;4

We have:   log2(x)+3log2x(x)  =  4\displaystyle \text{We have: }\;\log_2(x) + 3\log_{2x}(x) \;=\;4

. . 1logx(2)+3logx(2x)  =  4\displaystyle \frac{1}{\log_x(2)} + \frac{3}{\log_x(2x)} \;=\;4

. . logx(2x)+3logx(2)  =  4logx(2)logx(2x)\displaystyle \log_x(2x) + 3\log_x(2) \;=\;4\log_x(2)\log_x(2x)

. . logx(2)+logx(x)+3logx(2)  =  4logx(2)[logx(2)+logx(x)]\displaystyle \log_x(2) + \log_x(x) + 3\log_x(2) \;=\;4\log_x(2)\bigg[\log_x(2) + \log_x(x)\bigg]

. . 4logx(2)+1  =  4logx(2)[logx(2)+1]\displaystyle 4\log_x(2) + 1 \;=\;4\log_x(2)\bigg[\log_x(2) + 1\bigg]

. . 4logx(2)+1  =  4[logx(2)]2+4logx(2)\displaystyle 4\log_x(2) + 1 \;=\;4\bigg[\log_x(2)\bigg]^2 + 4\log_x(2)


We have:   4[logx(2)]2  =  1[logx(2)]2  =  14logx(2)  =  ±12\displaystyle \text{We have: }\;4\bigg[\log_x(2)\bigg]^2 \;=\;1 \quad\Rightarrow\quad\bigg[\log_x(2)\bigg]^2 \;=\;\frac{1}{4} \quad\Rightarrow\quad \log_x(2) \;=\;\pm\frac{1}{2}

. . logx(2)=12x12=2x=4\displaystyle \log_x(2) \:=\:\frac{1}{2} \quad\Rightarrow\quad x^{\frac{1}{2}} \:=\:2 \quad\Rightarrow\quad\boxed{ x \:=\:4}

. . logx(2)=12x12=2x=14\displaystyle \log_x(2) \:=\:-\frac{1}{2} \quad\Rightarrow\quad x^{-\frac{1}{2}} \:=\:2 \quad\Rightarrow\quad \boxed{x \:=\:\frac{1}{4}}

 
Top