logarithims

Susan Symonds

New member
Joined
Nov 6, 2005
Messages
1
can anyone solve this, please?

3^(2x+3)=2^(2-3x)

I have been fighting with it for 2 days!

Thanks
 
32x+3=223x\displaystyle {\rm{3}}^{{\rm{2x + 3}}} = 2^{2 - 3x}

(2x+3)ln(3)=(23x)ln(2)\displaystyle \left( {2x + 3} \right)\ln (3) = \left( {2 - 3x} \right)\ln (2)

[2ln(3)+3ln(2)]x=2ln(2)3ln(3)\displaystyle \left[ {2\ln (3) + 3\ln (2)} \right]x = 2\ln (2) - 3\ln (3)

Now you solve for x.
 
Top