Logarighms issues

justan4cat

New member
Joined
May 23, 2010
Messages
39
The directions state: Express as a sum, difference, and product of logarighms, without using exponents.

log[sub:3v9h13vp]b[/sub:3v9h13vp] 4throot(x[sup:3v9h13vp]5[/sup:3v9h13vp]b[sup:3v9h13vp]9[/sup:3v9h13vp] / y[sup:3v9h13vp]7[/sup:3v9h13vp]z[sup:3v9h13vp]10[/sup:3v9h13vp])

It's a multiple choice question, and I can't seem to come up with any of the answers.
 
logb[x5b9y7z10]14\displaystyle log_b\bigg[\frac{x^5b^9}{y^7z^{10}}\bigg]^{\frac{1}{4}}

= logb[x5b9y7z10]4\displaystyle = \ \frac{log_b\bigg[\frac{x^5b^9}{y^7z^{10}}\bigg]}{4}

= logb(x5b9)logb(y7z10)4\displaystyle = \ \frac{log_b(x^5b^9)-log_b(y^7z^{10})}{4}

= [logb(x5)+logb(b9)(logb(y7)+logb(z10)]4\displaystyle = \ \frac{[log_b(x^5)+log_b(b^9)-(log_b(y^7)+log_b(z^{10})]}{4}

= [5logb(x)+9logb(b)7logb(y)10logb(z)]4\displaystyle = \ \frac{[5log_b(x)+9log_b(b)-7log_b(y)-10log_b(z)]}{4}

= 9+5logb(x)7logb(y)10logb(z)4\displaystyle = \ \frac{9+5log_b(x)-7log_b(y)-10log_b(z)}{4}
 
Hello, justan4cat!

Another approach . . .


Express as a sum, difference, and product of logarithms, without using exponents.

. . logbx5b9y7z104\displaystyle \log_b \sqrt[4]{ \frac{x^5b^9}{y^7z^{10}}}

We have:   logb ⁣(x5b9y7z10)14\displaystyle \text{We have: }\;\log_b\!\left(\frac{x^5b^9}{y^7z^{10}}\right)^{\frac{1}{4}}

. . . . . =  logb ⁣[(x5)14(b9)14(y7)14(z10)14]\displaystyle =\;\log_b\!\left[\frac{(x^5)^{\frac{1}{4}}(b^9)^{\frac{1}{4}}}{(y^7)^{\frac{1}{4}}(z^{10})^{\frac{1}{4}}} \right]

. . . . . =  logb ⁣[x52b94y74z52]\displaystyle =\;\log_b\!\left[\frac{x^{\frac{5}{2}}\,b^{\frac{9}{4}}}{y^{\frac{7}{4}}\,z^{\frac{5}{2}}} \right]

. . . . . =  logb ⁣(x54b94)logb ⁣(y74z52)\displaystyle =\;\log_b\!\left(x^{\frac{5}{4}}b^{\frac{9}{4}}\right) - \log_b\!\left(y^{\frac{7}{4}}z^{\frac{5}{2}}\right)

. . . . . =  [logb ⁣(x54)+logb ⁣(b94)][logb ⁣(y74)+logb ⁣(z52)]\displaystyle =\; \left[\log_b\!\left(x^{\frac{5}{4}}\right) + \log_b\!\left(b^{\frac{9}{4}}\right)\right] - \left[\log_b\!\left(y^{\frac{7}{4}}\right) + \log_b\!\left(z^{\frac{5}{2}}\right)\right]

. . . . . =  logb ⁣(x54)+logb ⁣(b94)logb ⁣(y74)logb ⁣(z52)\displaystyle =\; \log_b\!\left(x^{\frac{5}{4}}\right) + \log_b\!\left(b^{\frac{9}{4}}\right) - \log_b\!\left(y^{\frac{7}{4}}\right) - \log_b\!\left(z^{\frac{5}{2}}\right)

. . . . . =  54logb(x)+94logb(b)This is 174logb(y)52logb(z)\displaystyle =\;\tfrac{5}{4}\log_b(x) + \tfrac{9}{4}\underbrace{\log_b(b)}_{\text{This is 1}} - \tfrac{7}{4}\log_b(y) - \tfrac{5}{2}\log_b(z)

. . . . .=  54logb(x)+9474logb(y)52logb(z)\displaystyle =\;\tfrac{5}{4}\log_b(x) + \tfrac{9}{4} - \tfrac{7}{4}\log_b(y) - \tfrac{5}{2}\log_b(z)

 
Soroban... Thank you so very much! I understand that now! However, now that I see how you worked that, it confuses me on the next problem on my homework. It looks almost the same, and when I work it like you did, I'm not getting one of the choice questions. Here's what I have:
Express as a single logarithm, and, if possible, simplify.

log[sub:3utpvstv]a[/sub:3utpvstv]y + 1/7 log[sub:3utpvstv]a[/sub:3utpvstv]z

using: log[sub:3utpvstv]a[/sub:3utpvstv]M + log[sub:3utpvstv]a[/sub:3utpvstv]N=log[sub:3utpvstv]a[/sub:3utpvstv](MN)
log[sub:3utpvstv]a[/sub:3utpvstv]y + 1/7 log[sub:3utpvstv]a[/sub:3utpvstv]z
log[sub:3utpvstv]a[/sub:3utpvstv]y + log[sub:3utpvstv]a[/sub:3utpvstv](z[sup:3utpvstv]1/7[/sup:3utpvstv])
log[sub:3utpvstv]a[/sub:3utpvstv]y(z[sup:3utpvstv]1/7[/sup:3utpvstv])

but the choices have a 4 in them, and I don't understand where that is coming from. The choices are:

log[sub:3utpvstv]a[/sub:3utpvstv]y[sup:3utpvstv]4[/sup:3utpvstv]/z[sup:3utpvstv]1/7[/sup:3utpvstv]
log[sub:3utpvstv]a[/sub:3utpvstv](y[sup:3utpvstv]4[/sup:3utpvstv]z[sup:3utpvstv]1/7[/sup:3utpvstv])
log[sub:3utpvstv]a[/sub:3utpvstv](y[sup:3utpvstv]1/7[/sup:3utpvstv]z[sup:3utpvstv]4[/sup:3utpvstv])
log[sub:3utpvstv]a[/sub:3utpvstv](yz)[sup:3utpvstv]4/7[/sup:3utpvstv]

I have to be missing something.
 
Top