Log - same base, and help

K.ourt

New member
Joined
Jul 20, 2005
Messages
17
Untitled-1copy.jpg

I have to get that all into one base, but I am unsure of how to proceed and get them both into base 2, or base 4.



And

log6X - log6(x-1)=1
(the 6 is the base). But I keep cancelling my x's by accident. Eeeh.
 
Hello, K.ourt!

log4(x)+log2(y)log2(z)\displaystyle \log_4(x)\,+\,\log_2(y)\,-\,\log_2(z)

But I am unsure of how to proceed and get them both into base 2, or base 4.
Let: log4(x)=p\displaystyle \,\log_4(x)\,=\,p, then: 4p=x\displaystyle 4^p\,=\,x

    \displaystyle \;\;Take logs (base 2): log2(4p)=log2(x)        plog2(4)=log2(x)\displaystyle \,\log_2(4^p)\,=\,\log_2(x)\;\;\Rightarrow\;\;p\cdot\log_2(4)\,=\,\log_2(x)

    \displaystyle \;\;And we have: p2=log2(x)        p=12log2(x)=log2(x12)\displaystyle p\cdot2\,=\,\log_2(x)\;\;\Rightarrow\;\;p\,=\,\frac{1}{2}\cdot\log_2(x) \,=\,\log_2(x^{\frac{1}{2}})

    \displaystyle \;\;That is: log4(x)=log2(x)  \displaystyle \log_4(x)\,=\,\log_2(\sqrt{x})\; **


The problem becomes: \(\displaystyle \,\log_2(\sqrt{x})\,+\,\log_2(y)\,-\,\log_2(z)\;=\;\log_2\L\left(\frac{\sqrt{x}\cdot y}{z}\right)\)


log6(x)log6(x1)=1\displaystyle \log_6(x)\,-\,\log_6(x\,-\,1)\:=\:1
But I keep cancelling my x's by accident.     \displaystyle \;\; That shouldn't happen . . . Watch your algebra!
We have: log6(xx1)=1        xx1=61\displaystyle \log_6\left(\frac{x}{x\,-\,1}\right)\:=\:1\;\;\Rightarrow\;\;\frac{x}{x\,-\,1}\:=\:6^1

Then: x=6(x1)        x=6x6        6=5x        x=65\displaystyle \,x\:=\:6(x\,-\,1)\;\;\Rightarrow\;\;x\:=\:6x\,-\,6\;\;\Rightarrow\;\;6\,=\,5x\;\;\Rightarrow\;\;x\,=\,\frac{6}{5}


~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

**
Are you familiar with the Base Change Formula?   loga(x)=logb(x)logb(a)\displaystyle \;\log_a(x)\:=\:\frac{\log_b(x)}{\log_b(a)}

Then: log4(x)=log2(x)log2(4)=  log2(x)2=log2(x12)\displaystyle \,\log_4(x) \:= \:\frac{\log_2(x)}{\log_2(4)} \:=\;\frac{\log_2(x)}{2} \:=\:\log_2(x^{\frac{1}{2}}) . . . etc.
 
Top