Hi, can someone check over my work? Thanks
Find the equation of the tangent to the curve at the given point
\(\displaystyle \L\ y=x^{2}lnx\) at (1,0)
\(\displaystyle \L\ y'=(2x)(lnx)+(x^{2})(\frac{1}{x})\)
\(\displaystyle \L\ y'=(2x)(lnx)+x\)
\(\displaystyle \L\ y'=(3x)(lnx)\)
\(\displaystyle \L\ y'=3ln\)
Point Slope Form
y-y1=mx(x-x1)
y-0=3 ln(x-1)
y=3 lnx-3 ln
b) y=logx, (100,2)
\(\displaystyle \L\ 10^{y}=x\)
\(\displaystyle \L\ ln10^{y}=lnx\)
\(\displaystyle \L\frac{d}{dx}ln10^{y}=\frac{d}{dx}lnx\)
\(\displaystyle \L\frac{1}{10^{y}}*{10^{y}*ln10*\frac{d}{dx}=\frac{1}{x}\)
\(\displaystyle \L\ 10^{y}*ln10*\frac{d}{dx}=\frac{1}{x}\)
\(\displaystyle \L\frac{d}{dx}=\frac{1}{(x)(10^{y})(ln10)}\)
\(\displaystyle \L\frac{d}{dx}=\frac{1}{(100)(10^{2})(ln10)}\)
\(\displaystyle \L\frac{d}{dx}=\frac{1}{(10,000)(ln10)}\)
Find the equation of the tangent to the curve at the given point
\(\displaystyle \L\ y=x^{2}lnx\) at (1,0)
\(\displaystyle \L\ y'=(2x)(lnx)+(x^{2})(\frac{1}{x})\)
\(\displaystyle \L\ y'=(2x)(lnx)+x\)
\(\displaystyle \L\ y'=(3x)(lnx)\)
\(\displaystyle \L\ y'=3ln\)
Point Slope Form
y-y1=mx(x-x1)
y-0=3 ln(x-1)
y=3 lnx-3 ln
b) y=logx, (100,2)
\(\displaystyle \L\ 10^{y}=x\)
\(\displaystyle \L\ ln10^{y}=lnx\)
\(\displaystyle \L\frac{d}{dx}ln10^{y}=\frac{d}{dx}lnx\)
\(\displaystyle \L\frac{1}{10^{y}}*{10^{y}*ln10*\frac{d}{dx}=\frac{1}{x}\)
\(\displaystyle \L\ 10^{y}*ln10*\frac{d}{dx}=\frac{1}{x}\)
\(\displaystyle \L\frac{d}{dx}=\frac{1}{(x)(10^{y})(ln10)}\)
\(\displaystyle \L\frac{d}{dx}=\frac{1}{(100)(10^{2})(ln10)}\)
\(\displaystyle \L\frac{d}{dx}=\frac{1}{(10,000)(ln10)}\)