JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser .
Locked on 2 'prove identity' questions for days now
I been trying to work these 2 problems for what seems forever
1) Prove: Sec A + Tan A = Tan(pi / 4 + A / 2)
I leave the Sec A + Tan A alone and work the Tan( pi / 4 + A / 2) part.
I keep getting to (1 + Tan A / 2) / (1 - Tan A / 2) and getting stuck there.
The next one been kick my butt for days
2) Prove: (1 + Cos theta + iSin theta)^n + (1 + Cos theta - i Sin theta)^n
= 2^(n+1) Cos^n theta/2 Cos n(theta)/2
I am completely lost in the woods. Even a gentle push in the right direction would be appriecated. Thank you!
Hello, Mathlocked!
1) Prove: \(\displaystyle \,\sec A \,+ \,\tan A \;= \;\tan\left(\frac{\pi}{4}\,+\,\frac{A}{2}\right)\)
Your first step is correct . . .
\(\displaystyle \L\tan\left(\frac{\pi}{4}\,+\,\frac{A}{2}\right) \;= \;\frac{\tan\left(\frac{\pi}{4}\right)\,+\,\tan\left(\frac{A}{2}\right)}{1 - \tan\left(\frac{\pi}{4}\right)\tan\left(\frac{A}{2}\right)} \;=\;\frac{1\,+\,\tan\left(\frac{A}{2}\right)}{1\,-\,\tan\left(\frac{A}{2}\right)} \;= \;\frac{1\,+\,\frac{\sin\left(\frac{A}{2}\right)}{\cos\left(\frac{A}{2}\right)} }{1\,-\,\frac{\sin\left(\frac{A}{2}\right)}{\cos\left(\frac{A}{2}\right)} }\)
Multiply top and bottom by \(\displaystyle \cos\left(\frac{A}{2}\right):\)
. . \(\displaystyle \L\frac{\cos\left(\frac{A}{2}\right)\,\cdot\,\left[1\,+\,\frac{\sin\left(\frac{A}{2}\right)}{\cos\left(\frac{A}{2}\right)}\right] }{\cos\left(\frac{A}{2}\right)\,\cdot\,\left[1\,-\,\frac{\sin\left(\frac{A}{2}\right)}{\cos\left(\frac{A}{2}\right)}\right] } \;= \;\frac{\cos\left(\frac{A}{2}\right) \,+ \,\sin\left(\frac{A}{2}\right)}{\cos\left(\frac{A}{2}\right) \,- \,\sin\left(\frac{A}{2}\right)}\)
Multiply top and bottom by \(\displaystyle \cos\left(\frac{A}{2}\right)\,+\,\sin\left(\frac{A}{2}\right)\)
. . \(\displaystyle \L\frac{\cos\left(\frac{A}{2}\right) \,+ \,\sin\left(\frac{A}{2}\right)}{\cos\left(\frac{A}{2}\right) \,+\,\sin\left(\frac{A}{2}\right)} \,\cdot\,\frac{\cos\left(\frac{A}{2}\right)\,+\,\sin\left(\frac{A}{2}\right)}{\cos\left(\frac{A}{2}\right)\,-\,\sin\left(\frac{A}{2}\right)} \;= \;\frac{\cos^2\left(\frac{A}{2}\right)\,+\,2\cos\left(\frac{A}{2}\right)\sin\left(\frac{A}{2}\right)\,+\,\sin^2\left(\frac{A}{2}\right)}{\cos^2\left(\frac{A}{2}\right)\,-\,\sin^2\left(\frac{A}{2}\right)}\)
. . \(\displaystyle \L=\;\frac{1\,+\,\sin A}{\cos A} \;=\;\frac{1}{\cos A}\,+\,\frac{\sin A}{\cos A} \;= \;\sec A\,+\,\tan A\)
Hello again, Mathlocked!
No good news . . . I'm stuck on #2, too.
I tried to apply DeMoivre's Theorem, but . . .
2) Prove: \(\displaystyle \ 1\,+\,\cos\theta\,+\,i\sin\theta)^n\:+\ 1\,+\,\cos\theta\,-\,i\sin\theta)^n \;= \;2^{n+1}\,\cos^n\left(\frac{\theta}{2}\right)\,\cos\left(n\frac{\theta}{2}\right)\)
Let: \(\displaystyle \begin{array}{cc}z\,=\,\cos\theta\,+\,i\sin\theta \\ \overline z\,=\,\cos\theta\,-\,\imath\sin\theta\end{array}\)
We have: \(\displaystyle \:\left(1\,+\,z)^n\,+\,(1\,+\,\overline z)^n\)
Use the Binomial Theorem:
. . \(\displaystyle (1\,+\,z)^n\;=\;1\,+\,nz\,+\,{n\choose 2}z^2\,+\,{n\choose3}z^3\,+\,\cdots\,+\,z^n\)
. . \(\displaystyle (1\,+\,\overline z)^n\;=\;1\,+\,n\overline z\,+\,{n\choose 2}\overline{z}^2\,+\,{n\choose3}\overline{z}^3\,+\,\cdots\,+\,\overline{z}^n\)
Add: \(\displaystyle \:2\,+\,n(z\,+\,\overline z)\,+\,{n\choose2}(z^2\,+\,\overline z^2)\,+\,{n\choose3}(z^3\,+\,\overline z^3)\,+\,\cdots\,+\,(z^n\,+\,\overline z^n)\;\) [1]
And I thought I was on my way . . .
Since: \(\displaystyle \begin{array}{cc}z\:=\:\cos z\,+\,i\sin z\\ \overline z \:=\:\cos z\,-\,i\sin z\end{array}\)
. . by DeMoivre's Theorem: \(\displaystyle \:\begin{array}{cc}z^n\:=\:\cos(n\theta)\,+\,i\sin(n\theta) \\ \overline z^n\:=\:\cos(n\theta)\,-\,i\sin(n\theta)\end{array}\)
Then: \(\displaystyle \:z^n\,+\,\overline z^n\:=\:2\cdot\cos(n\theta)\)
Hence [1] becomes: \(\displaystyle \:2\,+\,2n\cos\theta\,+\,2{n\choose2}\cos(2\theta)\,+\,2{n\choose3}\cos(3\theta)\,+\,\cdots\,+\,2\cos(n\theta)\)
. . . Now what?