These proofs are stumping me. I have an idea for both but don't really know where to take them...
1) Let T (domain R[sup:24r9cjoh]n[/sup:24r9cjoh] and codomain R[sup:24r9cjoh]n[/sup:24r9cjoh]) be a linear transformation. Show that if T maps two linearly independent vectors onto a linearly dependent set, then the equation T(x)=0 has a nontrival solution. (the x and 0 are vectors). Suppose vectors u and v in R[sup:24r9cjoh]n[/sup:24r9cjoh] are linearly independent and yet T(u) and T(v) are linearly dependent. Then c[sub:24r9cjoh]1[/sub:24r9cjoh]*T(u)+c[sub:24r9cjoh]2[/sub:24r9cjoh]*T(v) = 0 for some weights c[sub:24r9cjoh]1[/sub:24r9cjoh] and c[sub:24r9cjoh]2[/sub:24r9cjoh], not both zero. Use this equation.
2) Suppose vectors v[sub:24r9cjoh]1[/sub:24r9cjoh],...,v[sub:24r9cjoh]p[/sub:24r9cjoh] span R[sup:24r9cjoh]n[/sup:24r9cjoh] and let T with domain R[sup:24r9cjoh]n[/sup:24r9cjoh] and codomain R[sup:24r9cjoh]n[/sup:24r9cjoh] be a linear transformation. Suppose T(v[sub:24r9cjoh]i[/sub:24r9cjoh]) = 0 for i = 1,...,p. Show that T is the zero transformation. That is, show that if x is any vector in R[sup:24r9cjoh]n[/sup:24r9cjoh], then T(x) = 0. (the zero vector)
Thanks!
1) Let T (domain R[sup:24r9cjoh]n[/sup:24r9cjoh] and codomain R[sup:24r9cjoh]n[/sup:24r9cjoh]) be a linear transformation. Show that if T maps two linearly independent vectors onto a linearly dependent set, then the equation T(x)=0 has a nontrival solution. (the x and 0 are vectors). Suppose vectors u and v in R[sup:24r9cjoh]n[/sup:24r9cjoh] are linearly independent and yet T(u) and T(v) are linearly dependent. Then c[sub:24r9cjoh]1[/sub:24r9cjoh]*T(u)+c[sub:24r9cjoh]2[/sub:24r9cjoh]*T(v) = 0 for some weights c[sub:24r9cjoh]1[/sub:24r9cjoh] and c[sub:24r9cjoh]2[/sub:24r9cjoh], not both zero. Use this equation.
2) Suppose vectors v[sub:24r9cjoh]1[/sub:24r9cjoh],...,v[sub:24r9cjoh]p[/sub:24r9cjoh] span R[sup:24r9cjoh]n[/sup:24r9cjoh] and let T with domain R[sup:24r9cjoh]n[/sup:24r9cjoh] and codomain R[sup:24r9cjoh]n[/sup:24r9cjoh] be a linear transformation. Suppose T(v[sub:24r9cjoh]i[/sub:24r9cjoh]) = 0 for i = 1,...,p. Show that T is the zero transformation. That is, show that if x is any vector in R[sup:24r9cjoh]n[/sup:24r9cjoh], then T(x) = 0. (the zero vector)
Thanks!