linear functions: (x,y) = (1, 8), (2, 13), (3, 19), (4, 26),

darlene

New member
Joined
Apr 3, 2009
Messages
1
input/out put
1 8
2 13
3 19
4 26
5 34

What is the rule (function)?

I notice that the change in numbers is increasing by 1. So I am thinking that x should have a square in the solution somewhere. I cannot see the pattern
 
Re: linear functions

That ain't no gimme, Darlene!

Here tizz (cause your 1st name is same as my daughter's!):

nth term = (n^2 + 7n + 8) / 2

n = 1: (1 + 7 + 8) / 2 = 16 /2 = 8
...
n = 5: (25 + 35 + 8) / 2 = 68 / 2 = 34
 
Hello, Darlene!

It is usually very difficult to find the generating function "by inspection".


\(\displaystyle \begin{array}{|c|c|}\hline \text{Input} & \text{Output} \\ \hline 1 & 8 \\ 2 &13 \\ 3 & 19 \\ 4 & 26 \\ 5 & 34 \end{array}\)

What is the rule (function)?

I notice that the change in numbers is increasing by 1.
So I am thinking that x should have a square in the solution somewhere. . . . . Right!

\(\displaystyle \text{We want a quadratic function: }\:f(n) \;=\;an^2 + bn + c\)


\(\displaystyle \text{Use the first three terms of the sequence:}\)

. . \(\displaystyle \begin{array}{ccccccc} f(1) = 8\!: & a + b + c &=& 8 & [1] \\ f(2) = 13\!: &4a + 2b + c &=& 13 & [2] \\ f(3) = 19\!: & 9a + 3b + c &=& 19 & [3] \end{array}\)

. . \(\displaystyle \begin{array}{cccccc}\text{Subtract [2] - [1]:} & 3a + b &=& 5 & [4] \\ \text{Subtract [3] - [2]:} & 5a + b &=& 6 & [5] \end{array}\)

. . \(\displaystyle \text{Subtract [5] - [4]: }\;2a \:=\:1 \quad\Rightarrow\quad \boxed{a \:=\:\tfrac{1}{2}}\)

. . \(\displaystyle \text{Substitute into [4]: }\;3\left(\tfrac{1}{2}\right) + b \:=\:5 \quad\Rightarrow\quad\boxed{ b \:=\:\tfrac{7}{2}}\)

. . \(\displaystyle \text{Substitute into [1]: }\;\tfrac{1}{2} + \tfrac{7}{2} + c \:=\:9 \quad\Rightarrow\quad\boxed{ c \:=\:4}\)


\(\displaystyle \text{Therefore: }\;f(n) \;=\;\tfrac{1}{2}n^2 +\tfrac{7}{2}n + 4 \quad\Rightarrow\quad \boxed{f(n)\;=\;\tfrac{1}{2}(n^2 + 7n + 8)}\)

 
Methinks you're complicating it, Soroban.
Code:
 8   13   19   26   34 ....
  5    6    7    8 ....
     1    1    1 ....
       0    0 ...
Using leftmost number of each line before 0:
8 + 5(n - 1) + 1(n - 1)(n-2) / 2
= 8 + 5n - 5 + (n^2 - 3n + 2) / 2
= (6 + 10n + n^2 - 3n + 2) / 2
= (n^2 + 7n + 8) / 2

General case; keeping the typing short (L? = 1st number in that line):
L1 + L2(n-1)/1 + L3(n-1)(n-2)/(1*2) + L4(n-1)(n-2)(n-3) / (1*2*3) + ......
 
Top