nhallowell
New member
- Joined
- Dec 7, 2017
- Messages
- 1
Problem 9.1. Let \(\displaystyle \mathsf{h}:\, \mathcal{P}_2\, \rightarrow \, \mathcal{P}_2\) be the homomorphism given by
. . . . .\(\displaystyle 1\, \mapsto\, 3,\quad \mathcal{\large{x}}\, \mapsto\, 2\mathcal{\large{x}}\, -\, 1,\quad \mathcal{\large{x}}^2\, \mapsto\, \mathcal{\large{x}}^2\, -\, \mathcal{\large{x}}\, -\, 1\)
(a) Find \(\displaystyle \mathrm{A}\, =\, \mbox{Rep}_{\mathcal{A,A}}(\mathsf{h})\) where \(\displaystyle \mathcal{A}\, =\, \langle 1,\, \mathcal{\large{x}},\, \mathcal{\large{x}}^2 \rangle\)
(b) Find \(\displaystyle \mathrm{B}\, =\, \mbox{Rep}_{\mathcal{B,B}}(\mathsf{h})\) where \(\displaystyle \mathcal{B}\, =\, \langle 1,\, 1\, +\, \mathcal{\large{x}},\, 1\, +\, \mathcal{\large{x}}\, +\, \mathcal{\large{x}}^2 \rangle\)
(c) Find the matrix \(\displaystyle \mathrm{P}\) such that \(\displaystyle \mathrm{B}\, =\, \mathrm{PAP}^{-1}\)
Any help on these problems would be awesome! or at least point me in the right direction. Thanks for any help!
. . . . .\(\displaystyle 1\, \mapsto\, 3,\quad \mathcal{\large{x}}\, \mapsto\, 2\mathcal{\large{x}}\, -\, 1,\quad \mathcal{\large{x}}^2\, \mapsto\, \mathcal{\large{x}}^2\, -\, \mathcal{\large{x}}\, -\, 1\)
(a) Find \(\displaystyle \mathrm{A}\, =\, \mbox{Rep}_{\mathcal{A,A}}(\mathsf{h})\) where \(\displaystyle \mathcal{A}\, =\, \langle 1,\, \mathcal{\large{x}},\, \mathcal{\large{x}}^2 \rangle\)
(b) Find \(\displaystyle \mathrm{B}\, =\, \mbox{Rep}_{\mathcal{B,B}}(\mathsf{h})\) where \(\displaystyle \mathcal{B}\, =\, \langle 1,\, 1\, +\, \mathcal{\large{x}},\, 1\, +\, \mathcal{\large{x}}\, +\, \mathcal{\large{x}}^2 \rangle\)
(c) Find the matrix \(\displaystyle \mathrm{P}\) such that \(\displaystyle \mathrm{B}\, =\, \mathrm{PAP}^{-1}\)
Any help on these problems would be awesome! or at least point me in the right direction. Thanks for any help!
Attachments
Last edited by a moderator: