hi i'm new to this site and was wondering if i can get some help:
Let V=P[sub:frx0y6b8]1[/sub:frx0y6b8](R) and let f[sub:frx0y6b8]1[/sub:frx0y6b8], f[sub:frx0y6b8]2[/sub:frx0y6b8] be in the set V[sup:frx0y6b8]*[/sup:frx0y6b8] be defined by
f[sub:frx0y6b8]1[/sub:frx0y6b8](p) = int[0,1] p(t) dt, f[sub:frx0y6b8]2[/sub:frx0y6b8](p) = int[0,2] p(t) dt, p in the set V
prove that (beta)[sup:frx0y6b8]*[/sup:frx0y6b8] = {f[sub:frx0y6b8]1[/sub:frx0y6b8],f[sub:frx0y6b8]2[/sub:frx0y6b8]} is a basis for V[sup:frx0y6b8]*[/sup:frx0y6b8], and find a basis (beta) for V for which (beta)[sup:frx0y6b8]*[/sup:frx0y6b8] is the dual basis.
i'm really not sure where to start here... i would really appreciate any help.
thank you all.
Let V=P[sub:frx0y6b8]1[/sub:frx0y6b8](R) and let f[sub:frx0y6b8]1[/sub:frx0y6b8], f[sub:frx0y6b8]2[/sub:frx0y6b8] be in the set V[sup:frx0y6b8]*[/sup:frx0y6b8] be defined by
f[sub:frx0y6b8]1[/sub:frx0y6b8](p) = int[0,1] p(t) dt, f[sub:frx0y6b8]2[/sub:frx0y6b8](p) = int[0,2] p(t) dt, p in the set V
prove that (beta)[sup:frx0y6b8]*[/sup:frx0y6b8] = {f[sub:frx0y6b8]1[/sub:frx0y6b8],f[sub:frx0y6b8]2[/sub:frx0y6b8]} is a basis for V[sup:frx0y6b8]*[/sup:frx0y6b8], and find a basis (beta) for V for which (beta)[sup:frx0y6b8]*[/sup:frx0y6b8] is the dual basis.
i'm really not sure where to start here... i would really appreciate any help.
thank you all.