The problem:
Which line tangent to y = 9 – x[sup:19629od8]2[/sup:19629od8] cuts off the smallest area in the first quadrant?
My work so far:
Let the point of tangency be (h, 9 – h[sup:19629od8]2[/sup:19629od8]), let the x-intercept be (u, 0), and let the y-intercept be (0, v).
The area of the triangle is a = (1/2)uv. We need to express a in terms of h so we can find the tangent point that gives the smallest area for the cut off triangle.
The equation of the line is y – (9 – h[sup:19629od8]2[/sup:19629od8]) = m(x – h) or y = m(x – h) + 9 – h[sup:19629od8]2[/sup:19629od8]. The slope m is y' = – 2x. So the equation of the line is:
y = (– 2x)(x – h) + 9 – h[sup:19629od8]2[/sup:19629od8] = – 2x[sup:19629od8]2[/sup:19629od8] + 2xh + 9 – h[sup:19629od8]2[/sup:19629od8].
Then:
0 = – 2u[sup:19629od8]2[/sup:19629od8] + 2uh + 9 – h[sup:19629od8]2[/sup:19629od8]
? 2u[sup:19629od8]2[/sup:19629od8] – 2uh = 9 – h[sup:19629od8]2[/sup:19629od8]
? u[sup:19629od8]2[/sup:19629od8] – uh = (9 – h[sup:19629od8]2[/sup:19629od8])/2
? u[sup:19629od8]2[/sup:19629od8] – uh + h[sup:19629od8]2[/sup:19629od8]/4 = (u – h/2)[sup:19629od8]2[/sup:19629od8] = (9 – h[sup:19629od8]2[/sup:19629od8])/2 + h[sup:19629od8]2[/sup:19629od8]/4
? u = sqrt[(9 – h[sup:19629od8]2[/sup:19629od8])/2 + h[sup:19629od8]2[/sup:19629od8]/4] + h/2 = (1/2) sqrt[18 – 2h[sup:19629od8]2[/sup:19629od8] + h[sup:19629od8]2[/sup:19629od8]] + h/2 = (1/2) sqrt[18 – h[sup:19629od8]2[/sup:19629od8]] + h/2
and:
v = 9 - h[sup:19629od8]2[/sup:19629od8]
So:
a = (1/2) ? {(1/2) sqrt[18 – h[sup:19629od8]2[/sup:19629od8]] + h/2} ? {9 - h[sup:19629od8]2[/sup:19629od8]}
Does this look correct so far? I've been trying to calculate the derivative of this with respect to h, but haven't been able to get the answer in my textbook, which is y + 2 sqrt(3) x = 12.
Which line tangent to y = 9 – x[sup:19629od8]2[/sup:19629od8] cuts off the smallest area in the first quadrant?
My work so far:
Let the point of tangency be (h, 9 – h[sup:19629od8]2[/sup:19629od8]), let the x-intercept be (u, 0), and let the y-intercept be (0, v).
The area of the triangle is a = (1/2)uv. We need to express a in terms of h so we can find the tangent point that gives the smallest area for the cut off triangle.
The equation of the line is y – (9 – h[sup:19629od8]2[/sup:19629od8]) = m(x – h) or y = m(x – h) + 9 – h[sup:19629od8]2[/sup:19629od8]. The slope m is y' = – 2x. So the equation of the line is:
y = (– 2x)(x – h) + 9 – h[sup:19629od8]2[/sup:19629od8] = – 2x[sup:19629od8]2[/sup:19629od8] + 2xh + 9 – h[sup:19629od8]2[/sup:19629od8].
Then:
0 = – 2u[sup:19629od8]2[/sup:19629od8] + 2uh + 9 – h[sup:19629od8]2[/sup:19629od8]
? 2u[sup:19629od8]2[/sup:19629od8] – 2uh = 9 – h[sup:19629od8]2[/sup:19629od8]
? u[sup:19629od8]2[/sup:19629od8] – uh = (9 – h[sup:19629od8]2[/sup:19629od8])/2
? u[sup:19629od8]2[/sup:19629od8] – uh + h[sup:19629od8]2[/sup:19629od8]/4 = (u – h/2)[sup:19629od8]2[/sup:19629od8] = (9 – h[sup:19629od8]2[/sup:19629od8])/2 + h[sup:19629od8]2[/sup:19629od8]/4
? u = sqrt[(9 – h[sup:19629od8]2[/sup:19629od8])/2 + h[sup:19629od8]2[/sup:19629od8]/4] + h/2 = (1/2) sqrt[18 – 2h[sup:19629od8]2[/sup:19629od8] + h[sup:19629od8]2[/sup:19629od8]] + h/2 = (1/2) sqrt[18 – h[sup:19629od8]2[/sup:19629od8]] + h/2
and:
v = 9 - h[sup:19629od8]2[/sup:19629od8]
So:
a = (1/2) ? {(1/2) sqrt[18 – h[sup:19629od8]2[/sup:19629od8]] + h/2} ? {9 - h[sup:19629od8]2[/sup:19629od8]}
Does this look correct so far? I've been trying to calculate the derivative of this with respect to h, but haven't been able to get the answer in my textbook, which is y + 2 sqrt(3) x = 12.