LeighCapehart said:
\(\displaystyle Let \ y \ = \ the \ expression \ in \ the \ quote \ box.\)
Take the natural logs of each side:
\(\displaystyle ln(y) = ln\bigg[\lim_{x \to 0}(1 + x)^{\frac{1}{x}}\bigg]\)
\(\displaystyle ln(y) = \lim_{x \to 0}\bigg \{ln \bigg[(1 + x)^{\frac{1}{x}} \bigg]\bigg\}\)
Bring the exponent (1/x) down as a multiplier:
\(\displaystyle ln(y) = \lim_{x \to 0} \bigg[\bigg(\frac{1}{x} \bigg)ln(1 + x)\bigg]\)
Rewrite:
\(\displaystyle ln(y) = \lim_{x \to 0}\frac{ln(1 + x)}{x}\)
One of the possibilities is to use L'Hopital's Rule, as the expression
on the right-hand side is one of the indeterminate forms:
\(\displaystyle ln(y) = \lim_{x \to 0}\frac{1/(1 + x)}{1}\)
\(\displaystyle ln(y) = \frac{1/(1 + 0)}{1} = \frac{1}{1}\)
\(\displaystyle ln(y) = 1\)
\(\displaystyle Raise \ the \ constant \ e \ to \ each \ side:\)
\(\displaystyle e^{ln(y)} \ = \ e^1\)
\(\displaystyle y \ = \ e\)
\(\displaystyle So \ \ the \ \lim_{x \to 0}{(1 + x)^{\frac{1}{x}} \ = \ \boxed{e}\)