Hello, mathishard124!
why does the lim as x goes to 0 of sin(5x)/x equal 5?
You already know that: \(\displaystyle \L\,\lim_{\theta\to0}\frac{\sin\theta}{\theta}\:=\:1\)
Note that the three \(\displaystyle \theta\)'s are
identical.
So: \(\displaystyle \L\,\lim_{5q\to0}\frac{\sin(5q)}{5q}\:=\:1\)
and: \(\displaystyle \L\,\lim_{7n\to0}\frac{\sin(7n)}{7n} \:=\:1\)
However, in \(\displaystyle \L\,\lim_{x\to0}\frac{\sin(5x)}{x}\), the three variables are
not identical.
But we can
make them identical . . .
Multiply the fraction by \(\displaystyle \frac{5}{5}:\L\;\lim_{x\to0}\,\left[\frac{5}{5}\cdot\frac{\sin(5x)}{x}\right] \;= \;\lim_{x\to0}\left[5\cdot\frac{\sin(5x)}{5x}\right]\)
We know that if \(\displaystyle x\to0\), then \(\displaystyle 5x\to0\)
So we have: \(\displaystyle \L\,\lim_{5x\to0}\left[5\cdot\frac{\sin(5x)}{5x}\right] \;= \;5\cdot\underbrace{\left[\lim_{5x\to0}\frac{\sin(5x)}{5x}\right]} \;=\;5\cdot1\;=\;5\)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . This is \(\displaystyle 1\)