LIMITS...PLEASE HELP

nikchic5

Junior Member
Joined
Feb 16, 2006
Messages
106
Could anyone please help me with this limit...step by step. Thanks so much!

the limit as z approaches 0 from the right of
(1+ 2x)^1/x

THANKS SO MUCH
 
Hello, nikchic5!

\(\displaystyle \L\lim_{x\to0^+}(1\,+\,2x)^{\frac{1}{x}}\)
Are you familiar with this defintion of \(\displaystyle e\) ?

\(\displaystyle \L\;\;\lim_{z\to0}(1\,+\,z)^{\frac{1}{z}}\;=\;e\)


\(\displaystyle \text{We have: }\L\,(1\,+\,2x)^{\frac{1}{x}}\)

\(\displaystyle \text{Multply the exponent by }\L\frac{2}{2}:\;\;(1\,+\,2x)^{\frac{1}{x}\cdot\frac{2}{2}} \;=\;(1\,+\,2x)^{\frac{1}{2x}\cdot2} \;=\;\left[(1\,+\,2x)^{\frac{1}{2x}}\right]^2\)


\(\displaystyle \text{Therefore: }\L\:\lim_{2x\to0^+}\left[(1\,+\,2x)^{\frac{1}{2x}}\right]^2 \;= \;\left[\lim_{2x\to0^+} (1\,+\,2x)^{\frac{1}{2x}}\right]^2 \;= \;\L e^2\)
 
Soroban's method is very nice and, no doubt, the best way, but here's another way.....if I may.

\(\displaystyle \L\\\lim_{x\to\0^{+}}(1+2x)^{\frac{1}{x}}\)

\(\displaystyle \L\\\lim_{x\to\0^{+}}e^{\frac{1}{x}ln(1+2x)}\)

\(\displaystyle \L\\e^{(\lim_{x\to\0^{+}}(\frac{ln(1+2x)}{x}))}\)

Using L'Hopitals's Rule and differentiating the numerator and denominator,

we get:

\(\displaystyle \L\\e^{(\lim_{x\to\0^{+}}(\frac{2}{2x+1}))}\)

\(\displaystyle \L\\e^{(2\lim_{x\to\0^{+}}(\frac{1}{1+2x}))}\)

As you can see, the limit inside the parentheses goes to 1, and we have:

\(\displaystyle \H\\e^{2}\)
 
Question...

After you use L'Hospitals rule...is that e supposed to be like in front of the whole problem? Thanks so much
 
Top