trickslapper
Junior Member
- Joined
- Sep 17, 2010
- Messages
- 62
Justify the existence of the limit of the sequence and then find the limit
1. x[sub:3u7jrgvc]n+1[/sub:3u7jrgvc]=1/3(2x[sub:3u7jrgvc]n[/sub:3u7jrgvc] + M/x[sup:3u7jrgvc]2[/sup:3u7jrgvc][sub:3u7jrgvc]n[/sub:3u7jrgvc]), x[sub:3u7jrgvc]1[/sub:3u7jrgvc]=M>0, where M is a real number
2. x[sub:3u7jrgvc]1[/sub:3u7jrgvc]= 3 + 1/3, x[sub:3u7jrgvc]2[/sub:3u7jrgvc]= 3 + 1/x[sub:3u7jrgvc]1[/sub:3u7jrgvc],...,X[sub:3u7jrgvc]n+1[/sub:3u7jrgvc] = 3 + 1/x[sub:3u7jrgvc]n[/sub:3u7jrgvc],....
3. x[sub:3u7jrgvc]n+1[/sub:3u7jrgvc]= (x[sub:3u7jrgvc]n[/sub:3u7jrgvc] + A)/4, x[sub:3u7jrgvc]1[/sub:3u7jrgvc]=0, where A is a real number
4. x[sub:3u7jrgvc]1[/sub:3u7jrgvc]=25, x[sub:3u7jrgvc]2[/sub:3u7jrgvc]=arctan(25), x[sub:3u7jrgvc]3[/sub:3u7jrgvc]=arctan(arctan(25)),...
I know to show the limit exists, i have to show that it is increasing and bounded above, and im not sure on how to actually find the limit. Can someone show me how to proceed with these questions?
1. x[sub:3u7jrgvc]n+1[/sub:3u7jrgvc]=1/3(2x[sub:3u7jrgvc]n[/sub:3u7jrgvc] + M/x[sup:3u7jrgvc]2[/sup:3u7jrgvc][sub:3u7jrgvc]n[/sub:3u7jrgvc]), x[sub:3u7jrgvc]1[/sub:3u7jrgvc]=M>0, where M is a real number
2. x[sub:3u7jrgvc]1[/sub:3u7jrgvc]= 3 + 1/3, x[sub:3u7jrgvc]2[/sub:3u7jrgvc]= 3 + 1/x[sub:3u7jrgvc]1[/sub:3u7jrgvc],...,X[sub:3u7jrgvc]n+1[/sub:3u7jrgvc] = 3 + 1/x[sub:3u7jrgvc]n[/sub:3u7jrgvc],....
3. x[sub:3u7jrgvc]n+1[/sub:3u7jrgvc]= (x[sub:3u7jrgvc]n[/sub:3u7jrgvc] + A)/4, x[sub:3u7jrgvc]1[/sub:3u7jrgvc]=0, where A is a real number
4. x[sub:3u7jrgvc]1[/sub:3u7jrgvc]=25, x[sub:3u7jrgvc]2[/sub:3u7jrgvc]=arctan(25), x[sub:3u7jrgvc]3[/sub:3u7jrgvc]=arctan(arctan(25)),...
I know to show the limit exists, i have to show that it is increasing and bounded above, and im not sure on how to actually find the limit. Can someone show me how to proceed with these questions?