Limits for x approaching infinity

funnytim

New member
Joined
Sep 20, 2009
Messages
18
Hello everyone!

I'm having problems with a calculus problem here,

1) Solve lim (x-->[infinity]) [(square root x^2 + x + 1)] / x

I never did quite understand how to do it if its limit as x approaches infinity. I believe I have to find a way to get ride of the bottom x ?

Thanks!
 
limxx2+x+1x\displaystyle \lim_{x\to \infty}\frac{\sqrt{x^{2}+x+1}}{x}

The trick is dividing the top by x2\displaystyle \sqrt{x^{2}} and the bottom by x.

Yes, we can do that.

Divide the top by x2\displaystyle \sqrt{x^{2}} and the bottom by x gives us limx1+1x+1x21\displaystyle \lim_{x\to \infty}\frac{\sqrt{1+\frac{1}{x}+\frac{1}{x^{2}}}}{1}

Now, see the limit?.
 
limx(x2+x+1)x = limxx2x = limxxx = 1\displaystyle \lim_{x\to\infty}\frac{\sqrt(x^{2}+x+1)}{x} \ = \ \lim_{x\to\infty}\frac{\sqrt x^{2}}{x} \ = \ \lim_{x\to\infty}\frac{x}{x} \ = \ 1

Note: (1,000,000,0002+1,000,000,000+1) = 1,000,000,000.5\displaystyle Note: \ \sqrt(1,000,000,000^{2}+1,000,000,000+1) \ = \ 1,000,000,000.5

1,000,000,0002 = 1,000,000,000, hence, as x approaches infinity, we are left with only x2.\displaystyle \sqrt1,000,000,000^{2} \ = \ 1,000,000,000, \ hence, \ as \ x \ approaches \ infinity, \ we \ are \ left \ with \ only \ x^{2}.
 
Top