I really need help finding and proving these limits
1) \lim_{n \rightarrow \infty}\sqrt[3]{\frac{n+\frac1{4}}{{8n+1}}
2) \lim_{n \rightarrow \infty}\sqrt{{n^2}-1}-n-1
3) \lim_{n \rightarrow \infty}\frac{n^2+1}{2n+1}-\frac{3n^2+1}{6n+1}
And prooving that this is a Cauchy sequence
1) \sum_{k=1}^n k = \frac{sink}{k^3}
1)
2)
3)
And prooving that this is a Cauchy sequence
1)
1) \lim_{n \rightarrow \infty}\sqrt[3]{\frac{n+\frac1{4}}{{8n+1}}
2) \lim_{n \rightarrow \infty}\sqrt{{n^2}-1}-n-1
3) \lim_{n \rightarrow \infty}\frac{n^2+1}{2n+1}-\frac{3n^2+1}{6n+1}
And prooving that this is a Cauchy sequence
1) \sum_{k=1}^n k = \frac{sink}{k^3}
1)
2)
3)
And prooving that this is a Cauchy sequence
1)