Limits: a_n = { [(n-3)/(n)]^3 }, a_n= { [((n^2)(2^n))/(n!)]}

djdavis2k

New member
Joined
Feb 27, 2009
Messages
16
Evaluate the limit (if it exist) of each of the following sequences. Indicate the results (definitions,theorems,etc.) you use to support your conclusion.

a.) a_n = { [(n-3)/(n)]^3 }

b.) a_n= { [((n^2)(2^n))/(n!)]}

c.) a_n= {1/3^5, -1/3^6,1/3^7,-1/3^8,....}

d.) a_n= {((-1)^n)*((2n^3)/(n^3+1))}

my work shown:

for a.) if you divide the numerator and the denominator of the expression within the brackets of the exponent of 'n' by n you get: a_n= (1- (3/n))^n

if you use a comparison test with b_n= (1+(1/k))^k and let 1/k= -3/n and k=-n/3 and n=-3k

therefore a_n becomes: (1+1/k)^(-3k)

if i take the natural logarithm of both sides i get ln a_n= = -3k (ln (1+1/k)

since the lim of n--> infinity of 1/k equals 0.. .therefore the expression (ln (1+1/k)= ln 1= 0

however, as k approaches infinity, -3k approaches -negative inf.

so the expression results in -infinity*zero= 0 so e^0= 1

so the limit approaches 1... i believe i made a few mistakes here... please help me out


for b.) a_n= (n^2)(2^n)/(n!) can be simplified to (n*2^n)/(n-1)! since n! can also be expressed as n(n-1)!

if the sequence is analyzed the denominator becomes much larger than the num. as n increases from n equals 1

if lim of n approaches infinity of (n)(2^n)/(n-1)! approaches zero.. but how do i explain this mathematically

can i say a_n can be compared to b_n= 1/n and since a_n is less than b_n it can be used to explain the sequence of a_n.. therefore it is equal to zero
i need some help here.. what did i do wrong


for c.) the expression can be simplified to a_n= (-1)^(n+1)) (1/3^(4+n)) assuming n=1 ... since this is symbolic of a harmonic series

can i say a_(n+1)> a(n), a(n+2)>a(n+1).. therefore the sequence is an alternating sequence.. so the sequence does not approach a value as n approaches infinity.. so the limit does not exist... how do i write this mathematically and algebracially... need a little bit of help here

for d.) a_n= ((-1)^n))*( (2n^3)/(n^3+1)) it can be simplified by dividing the number of the expression by the highest power factor which is "n^3"
which results in 2/((1+(1/n^3)))* (-1)^n
since, the limit of of n approaches of 1/n^3 approaches 0 since (1/n^3)<(1/n^2(<(1/n)

so the a_n expression becomes a_n= (-1)^n*(2)= {-2,2,-2,2,-2}
so the sequences is alternating between -2 and 2 .. so the sequence doesn't reach a limit as n approaches infinity... so the limit does not exist..
how do i express this mathematically and algebrically as well..
 
Re: Limit's Help.... work shown please help!!!

Hello, djdavis2k!

Thank you for showing your work!


Evaluate the limit (if it exist) of each of the following sequences.

\(\displaystyle a)\;\;a_n \:=\:\left(\frac{n-3}{n}\right)^3\)

Your work is admirable, but you misread the problem . . . the exponent is "3".

\(\displaystyle \text{So we have: }\:a_n \:=\:\left(\frac{n-3}{n}\right)^3 \;=\;\left(\frac{n}{n} - \frac{3}{n}\right)^3 \;=\; \left(1 - \frac{3}{n}\right)^3\)

\(\displaystyle \text{Then: }\:\lim_{n\to\infty}\left(1 - \frac{3}{n}\right)^3 \;=\;(1-0)^3 \;=\;1\)

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

\(\displaystyle \text{If the exponent was indeed an }n\text{, then: }\;\lim_{n\to\infty}\left(1 - \frac{3}{n}\right)^n \;=\;e^{-3}\)




\(\displaystyle b)\;\; a_n \:=\:\frac{n^2\cdot2^n}{n!}\)

\(\displaystyle \text{Are you allowed the Ratio Test? }\;R \;=\;\lim_{n\to\infty}\frac{a_{n+1}}{a_n}\)


\(\displaystyle \frac{a_{n+1}}{a_n} \;=\;\frac{\dfrac{(n+1)^2\cdot2^{n+1}}{(n+1)!}} {\dfrac{n^2\cdot2^n}{n!}} \;=\;\frac{(n+1)^2\cdot2^{n+1}}{(n+1)!}\cdot\frac{n!}{n^2\cdot2^n} \;=\;\frac{(n+1)^2}{n^2}\cdot\frac{2^{n+1}}{2^n} \cdot\frac{n!}{(n+1)!}\)

. . . . \(\displaystyle = \;\left(\frac{n+1}{n}\right)^2\cdot 2\cdot\frac{1}{n+1} \;=\;\left(1 + \frac{1}{n}\right)^2\cdot\frac{2}{n+1}\)


\(\displaystyle \text{Hence: }\:\lim_{n\to\infty}\left[\left(1+\frac{1}{n}\right)^2\cdot\frac{2}{n+1}\right] \;=\;1^2\cdot0 \;=\;0\)

\(\displaystyle \text{Therefore, the sequence converges to zero.}\)




\(\displaystyle c)\;\;a_n \:=\:\left\{ \frac{1}{3^5},\:\text{-}\frac{1}{3^6},\:\frac{1}{3^7},\:\text{-}\frac{1}{3^8}\:\hdots \right\}\)

\(\displaystyle \text{You are correct: }\:a_n \:=\:\frac{(-1)^{n+1}}{3^{n+4}}\)

\(\displaystyle \text{But it is a }geometric\text{ sequence, and it }converges\text{ to zero.}\)




\(\displaystyle d)\;\; a_n\:=\:(-1)^n\,\frac{2n^3}{n^3+1}\)

\(\displaystyle \text{Again, you are correct: }\:a_n \:=\:(-1)^n\,\frac{2}{1 + \frac{1}{n^3}}\)

\(\displaystyle \text{And its limit is: }\:\lim_{n\to\infty} a_n \:=\:\pm2\)

. . Therefore, the sequence diverges.
 
Re: Limit's Help.... work shown please help!!!

soroban said:
Hello, djdavis2k!

Thank you for showing your work!


Evaluate the limit (if it exist) of each of the following sequences.

\(\displaystyle a)\;\;a_n \:=\:\left(\frac{n-3}{n}\right)^3\)

Your work is admirable, but you misread the problem . . . the exponent is "3".

\(\displaystyle \text{So we have: }\:a_n \:=\:\left(\frac{n-3}{n}\right)^3 \;=\;\left(\frac{n}{n} - \frac{3}{n}\right)^3 \;=\; \left(1 - \frac{3}{n}\right)^3\)

\(\displaystyle \text{Then: }\:\lim_{n\to\infty}\left(1 - \frac{3}{n}\right)^3 \;=\;(1-0)^3 \;=\;1\)

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

\(\displaystyle \text{If the exponent was indeed an }n\text{, then: }\;\lim_{n\to\infty}\left(1 - \frac{3}{n}\right)^n \;=\;e^{-3}\)




[quote:1zqrkaft]\(\displaystyle b)\;\; a_n \:=\:\frac{n^2\cdot2^n}{n!}\)

\(\displaystyle \text{Are you allowed the Ratio Test? }\;R \;=\;\lim_{n\to\infty}\frac{a_{n+1}}{a_n}\)


\(\displaystyle \frac{a_{n+1}}{a_n} \;=\;\frac{\dfrac{(n+1)^2\cdot2^{n+1}}{(n+1)!}} {\dfrac{n^2\cdot2^n}{n!}} \;=\;\frac{(n+1)^2\cdot2^{n+1}}{(n+1)!}\cdot\frac{n!}{n^2\cdot2^n} \;=\;\frac{(n+1)^2}{n^2}\cdot\frac{2^{n+1}}{2^n} \cdot\frac{n!}{(n+1)!}\)

. . . . \(\displaystyle = \;\left(\frac{n+1}{n}\right)^2\cdot 2\cdot\frac{1}{n+1} \;=\;\left(1 + \frac{1}{n}\right)^2\cdot\frac{2}{n+1}\)


\(\displaystyle \text{Hence: }\:\lim_{n\to\infty}\left[\left(1+\frac{1}{n}\right)^2\cdot\frac{2}{n+1}\right] \;=\;1^2\cdot0 \;=\;0\)

\(\displaystyle \text{Therefore, the sequence converges to zero.}\)




\(\displaystyle c)\;\;a_n \:=\:\left\{ \frac{1}{3^5},\:\text{-}\frac{1}{3^6},\:\frac{1}{3^7},\:\text{-}\frac{1}{3^8}\:\hdots \right\}\)

\(\displaystyle \text{You are correct: }\:a_n \:=\:\frac{(-1)^{n+1}}{3^{n+4}}\)

\(\displaystyle \text{But it is a }geometric\text{ sequence, and it }converges\text{ to zero.}\)




\(\displaystyle d)\;\; a_n\:=\:(-1)^n\,\frac{2n^3}{n^3+1}\)

\(\displaystyle \text{Again, you are correct: }\:a_n \:=\:(-1)^n\,\frac{2}{1 + \frac{1}{n^3}}\)

\(\displaystyle \text{And its limit is: }\:\lim_{n\to\infty} a_n \:=\:\pm2\)

. . Therefore, the sequence diverges.
[/quote:1zqrkaft]

thanks for your help... are you sure a.) is correct because for the exponent of 'n'
for a.) shouldn't the value of the lim of n--> inf of {(1-3/n)}^n
be 0 or e^0 how did u get e^-3.... since 3/n as n approaches inf. is 0... and the ln 1 is 0
so if the natural logarithm is taken of a_n it equals n (ln (1-3/n) which is then equal to n*(0) so the e^(n*0) is equal to 1.. or the value is zero i'm not sure... please help me understand how u got e^-3
 
Re: Limit's Help.... work shown please help!!!

Regarding Soroban's \(\displaystyle e^{-3}\), you should know the famous limit \(\displaystyle \lim_{n\to \infty}\left(1+\frac{1}{x}\right)^{n}=e\)

You don't have to worry about proving this each time. Just use it. See now why it's \(\displaystyle e^{-3}\)?.

Also, \(\displaystyle \lim_{n\to 0}(1+n)^{\frac{1}{n}}=e\)

These will prove handy.
 
Top