Its been while since I asked a question... So here goes nothing!
This is from "Baby Rudin." Pg. 199, #12, (d).
Using:
\(\displaystyle \lim _{\delta \rightarrow 0} \,\, \,\, \,\, \sum_{n \ge 1} \frac{sin^2(n\delta)}{n^2\delta} = \frac{\pi}{2}\)
How to show:
\(\displaystyle \int_0^{\infty} (\frac{\sin{x}}{x})^2dx = \frac{\pi}{2}\)
Parts (a),(b),(c) have been proven. They are quoted here:
Thanks!
This is from "Baby Rudin." Pg. 199, #12, (d).
Using:
\(\displaystyle \lim _{\delta \rightarrow 0} \,\, \,\, \,\, \sum_{n \ge 1} \frac{sin^2(n\delta)}{n^2\delta} = \frac{\pi}{2}\)
How to show:
\(\displaystyle \int_0^{\infty} (\frac{\sin{x}}{x})^2dx = \frac{\pi}{2}\)
Parts (a),(b),(c) have been proven. They are quoted here:
Part a: Compute the Fourier coefficients of f.
\(\displaystyle f(x)=0\) when \(\displaystyle \delta < |x| \le \pi\) and \(\displaystyle f(x)=1\) when \(\displaystyle |x| \le \delta\).
\(\displaystyle f(x+2\pi)=f(x) \,\, \forall x\), \(\displaystyle 0 < \delta < \pi\)
Part b: Show
\(\displaystyle \sum _{n\ge1} \frac{\sin{n\delta}}{n} = \frac{\pi-\delta}{2}\)
Part c: Show, using Parseval's Thm:
\(\displaystyle \sum _{n\ge1} \frac{(\sin{n\delta})^2}{n^2\delta} = \frac{\pi-\delta}{2}\)
Thanks!