1) lim x-00 x^2sin(1/x) 2) lim x-00 (x^2+3x)^(1/2)-x
D dugan New member Joined Oct 27, 2005 Messages 2 Oct 30, 2005 #1 1) lim x-00 x^2sin(1/x) 2) lim x-00 (x^2+3x)^(1/2)-x
tkhunny Moderator Staff member Joined Apr 12, 2005 Messages 11,339 Oct 30, 2005 #2 dugan said: 1) lim x-00 x^2sin(1/x) Click to expand... Really big clue: x2 ∗ sin(1x) = x ∗ sin(1x)1x\displaystyle x^{2}\,*\,sin(\frac{1}{x})\,=\,x\,*\,\frac{sin(\frac{1}{x})}{\frac{1}{x}}x2∗sin(x1)=x∗x1sin(x1)
dugan said: 1) lim x-00 x^2sin(1/x) Click to expand... Really big clue: x2 ∗ sin(1x) = x ∗ sin(1x)1x\displaystyle x^{2}\,*\,sin(\frac{1}{x})\,=\,x\,*\,\frac{sin(\frac{1}{x})}{\frac{1}{x}}x2∗sin(x1)=x∗x1sin(x1)
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Oct 30, 2005 #3 Hello, dugan! 2) limx→∞[x2+3x − x]\displaystyle \displaystyle{2)\;\;\lim_{x\to\infty}\left[\sqrt{x^2 + 3x}\ -\ x\right] }2)x→∞lim[x2+3x − x] Click to expand... Multiply top and bottom by x2+3x + x:\displaystyle \sqrt{x^2 + 3x}\ +\ x:x2+3x + x: . . x2+3x − x1 ⋅ x2+3x + xx2+3x + x = (x2+3x) − x2x2+3x + x = 3xx2+3x + x\displaystyle \displaystyle{\frac{\sqrt{x^2 + 3x}\ -\ x}{1}\ \cdot\ \frac{\sqrt{x^2 + 3x}\ +\ x}{\sqrt{x^2 + 3x}\ +\ x} \;= \;\frac{(x^2 + 3x)\ -\ x^2}{\sqrt{x^2+3x}\ +\ x} \;= \;\frac{3x}{\sqrt{x^2+3x}\ +\ x} }1x2+3x − x ⋅ x2+3x + xx2+3x + x=x2+3x + x(x2+3x) − x2=x2+3x + x3x Divide top and bottom by x:\displaystyle x:x: . . 3xxx2+3xx + xx = 3x2x2+3xx2 + 1 = 31+3x + 1\displaystyle \displaystyle{\frac{\frac{3x}{x}}{\frac{\sqrt{x^2+3x}}{x}\ +\ \frac{x}{x}} \;= \;\frac{3}{\sqrt{\frac{x^2}{x^2} + \frac{3x}{x^2}}\ +\ 1} \;= \;\frac{3}{\sqrt{1 + \frac{3}{x}}\ +\ 1} }xx2+3x + xxx3x=x2x2+x23x + 13=1+x3 + 13 Take the limit: .limx→∞(31+3x + 1) = 31+0 + 1 = 32\displaystyle \displaystyle{\lim_{x\to\infty}\left(\frac{3}{\sqrt{1 + \frac{3}{x}}\ +\ 1}\right) \;= \;\frac{3}{\sqrt{1+0}\ +\ 1} \;= \;\frac{3}{2}}x→∞lim⎝⎛1+x3 + 13⎠⎞=1+0 + 13=23
Hello, dugan! 2) limx→∞[x2+3x − x]\displaystyle \displaystyle{2)\;\;\lim_{x\to\infty}\left[\sqrt{x^2 + 3x}\ -\ x\right] }2)x→∞lim[x2+3x − x] Click to expand... Multiply top and bottom by x2+3x + x:\displaystyle \sqrt{x^2 + 3x}\ +\ x:x2+3x + x: . . x2+3x − x1 ⋅ x2+3x + xx2+3x + x = (x2+3x) − x2x2+3x + x = 3xx2+3x + x\displaystyle \displaystyle{\frac{\sqrt{x^2 + 3x}\ -\ x}{1}\ \cdot\ \frac{\sqrt{x^2 + 3x}\ +\ x}{\sqrt{x^2 + 3x}\ +\ x} \;= \;\frac{(x^2 + 3x)\ -\ x^2}{\sqrt{x^2+3x}\ +\ x} \;= \;\frac{3x}{\sqrt{x^2+3x}\ +\ x} }1x2+3x − x ⋅ x2+3x + xx2+3x + x=x2+3x + x(x2+3x) − x2=x2+3x + x3x Divide top and bottom by x:\displaystyle x:x: . . 3xxx2+3xx + xx = 3x2x2+3xx2 + 1 = 31+3x + 1\displaystyle \displaystyle{\frac{\frac{3x}{x}}{\frac{\sqrt{x^2+3x}}{x}\ +\ \frac{x}{x}} \;= \;\frac{3}{\sqrt{\frac{x^2}{x^2} + \frac{3x}{x^2}}\ +\ 1} \;= \;\frac{3}{\sqrt{1 + \frac{3}{x}}\ +\ 1} }xx2+3x + xxx3x=x2x2+x23x + 13=1+x3 + 13 Take the limit: .limx→∞(31+3x + 1) = 31+0 + 1 = 32\displaystyle \displaystyle{\lim_{x\to\infty}\left(\frac{3}{\sqrt{1 + \frac{3}{x}}\ +\ 1}\right) \;= \;\frac{3}{\sqrt{1+0}\ +\ 1} \;= \;\frac{3}{2}}x→∞lim⎝⎛1+x3 + 13⎠⎞=1+0 + 13=23