limit question

dugan said:
1) lim x-00 x^2sin(1/x)
Really big clue:

x2sin(1x)=xsin(1x)1x\displaystyle x^{2}\,*\,sin(\frac{1}{x})\,=\,x\,*\,\frac{sin(\frac{1}{x})}{\frac{1}{x}}
 
Hello, dugan!

2)    limx[x2+3x  x]\displaystyle \displaystyle{2)\;\;\lim_{x\to\infty}\left[\sqrt{x^2 + 3x}\ -\ x\right] }
Multiply top and bottom by x2+3x + x:\displaystyle \sqrt{x^2 + 3x}\ +\ x:

. . x2+3x  x1  x2+3x + xx2+3x + x  =  (x2+3x)  x2x2+3x + x  =  3xx2+3x + x\displaystyle \displaystyle{\frac{\sqrt{x^2 + 3x}\ -\ x}{1}\ \cdot\ \frac{\sqrt{x^2 + 3x}\ +\ x}{\sqrt{x^2 + 3x}\ +\ x} \;= \;\frac{(x^2 + 3x)\ -\ x^2}{\sqrt{x^2+3x}\ +\ x} \;= \;\frac{3x}{\sqrt{x^2+3x}\ +\ x} }


Divide top and bottom by x:\displaystyle x:

. . 3xxx2+3xx + xx  =  3x2x2+3xx2 + 1  =  31+3x + 1\displaystyle \displaystyle{\frac{\frac{3x}{x}}{\frac{\sqrt{x^2+3x}}{x}\ +\ \frac{x}{x}} \;= \;\frac{3}{\sqrt{\frac{x^2}{x^2} + \frac{3x}{x^2}}\ +\ 1} \;= \;\frac{3}{\sqrt{1 + \frac{3}{x}}\ +\ 1} }


Take the limit: .limx(31+3x + 1)  =  31+0 + 1  =  32\displaystyle \displaystyle{\lim_{x\to\infty}\left(\frac{3}{\sqrt{1 + \frac{3}{x}}\ +\ 1}\right) \;= \;\frac{3}{\sqrt{1+0}\ +\ 1} \;= \;\frac{3}{2}}
 
Top