1) lim x-00 x^2sin(1/x) 2) lim x-00 (x^2+3x)^(1/2)-x
D dugan New member Joined Oct 27, 2005 Messages 2 Oct 30, 2005 #1 1) lim x-00 x^2sin(1/x) 2) lim x-00 (x^2+3x)^(1/2)-x
tkhunny Moderator Staff member Joined Apr 12, 2005 Messages 11,339 Oct 30, 2005 #2 dugan said: 1) lim x-00 x^2sin(1/x) Click to expand... Really big clue: \(\displaystyle x^{2}\,*\,sin(\frac{1}{x})\,=\,x\,*\,\frac{sin(\frac{1}{x})}{\frac{1}{x}}\)
dugan said: 1) lim x-00 x^2sin(1/x) Click to expand... Really big clue: \(\displaystyle x^{2}\,*\,sin(\frac{1}{x})\,=\,x\,*\,\frac{sin(\frac{1}{x})}{\frac{1}{x}}\)
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Oct 30, 2005 #3 Hello, dugan! \(\displaystyle \displaystyle{2)\;\;\lim_{x\to\infty}\left[\sqrt{x^2 + 3x}\ -\ x\right] }\) Click to expand... Multiply top and bottom by \(\displaystyle \sqrt{x^2 + 3x}\ +\ x:\) . . \(\displaystyle \displaystyle{\frac{\sqrt{x^2 + 3x}\ -\ x}{1}\ \cdot\ \frac{\sqrt{x^2 + 3x}\ +\ x}{\sqrt{x^2 + 3x}\ +\ x} \;= \;\frac{(x^2 + 3x)\ -\ x^2}{\sqrt{x^2+3x}\ +\ x} \;= \;\frac{3x}{\sqrt{x^2+3x}\ +\ x} }\) Divide top and bottom by \(\displaystyle x:\) . . \(\displaystyle \displaystyle{\frac{\frac{3x}{x}}{\frac{\sqrt{x^2+3x}}{x}\ +\ \frac{x}{x}} \;= \;\frac{3}{\sqrt{\frac{x^2}{x^2} + \frac{3x}{x^2}}\ +\ 1} \;= \;\frac{3}{\sqrt{1 + \frac{3}{x}}\ +\ 1} }\) Take the limit: .\(\displaystyle \displaystyle{\lim_{x\to\infty}\left(\frac{3}{\sqrt{1 + \frac{3}{x}}\ +\ 1}\right) \;= \;\frac{3}{\sqrt{1+0}\ +\ 1} \;= \;\frac{3}{2}}\)
Hello, dugan! \(\displaystyle \displaystyle{2)\;\;\lim_{x\to\infty}\left[\sqrt{x^2 + 3x}\ -\ x\right] }\) Click to expand... Multiply top and bottom by \(\displaystyle \sqrt{x^2 + 3x}\ +\ x:\) . . \(\displaystyle \displaystyle{\frac{\sqrt{x^2 + 3x}\ -\ x}{1}\ \cdot\ \frac{\sqrt{x^2 + 3x}\ +\ x}{\sqrt{x^2 + 3x}\ +\ x} \;= \;\frac{(x^2 + 3x)\ -\ x^2}{\sqrt{x^2+3x}\ +\ x} \;= \;\frac{3x}{\sqrt{x^2+3x}\ +\ x} }\) Divide top and bottom by \(\displaystyle x:\) . . \(\displaystyle \displaystyle{\frac{\frac{3x}{x}}{\frac{\sqrt{x^2+3x}}{x}\ +\ \frac{x}{x}} \;= \;\frac{3}{\sqrt{\frac{x^2}{x^2} + \frac{3x}{x^2}}\ +\ 1} \;= \;\frac{3}{\sqrt{1 + \frac{3}{x}}\ +\ 1} }\) Take the limit: .\(\displaystyle \displaystyle{\lim_{x\to\infty}\left(\frac{3}{\sqrt{1 + \frac{3}{x}}\ +\ 1}\right) \;= \;\frac{3}{\sqrt{1+0}\ +\ 1} \;= \;\frac{3}{2}}\)