limit proof

kelsjo813 said:
lim h->0 of cos (c+h) = cos(c)
how do you prove this ?

From a page of trig formulas, for angles A and B,


cos(A + B) = cos(A)cos(B) - sin(A)sin(B)


limh0cos(c+h)=\displaystyle \lim_{h \to 0} cos(c + h) =


limh0[cos(c)cos(h)sin(c)sin(h)]=\displaystyle \lim_{h \to 0}[cos(c)cos(h) - sin(c)sin(h)] =. . . .I left off here.\displaystyle . \ . \ . \ . I \ left \ off \ here.


Ask yourself as to what limh0cos(h)\displaystyle \lim_{h \to 0}cos(h) is and what limh0sin(h)\displaystyle \lim_{h \to 0}sin(h) is.


Then continue where I left off.
 
Another way:

From definition

cosh(ϕ) = eϕ + eϕ2\displaystyle cosh(\phi) \ = \ \frac{e^{\phi} \ + \ e^{-\phi}}{2}

Now express cosh(?+h) and take the limit
 
Top