Limit Problem

Jason76

Senior Member
Joined
Oct 19, 2012
Messages
1,180
\(\displaystyle \lim x \rightarrow \infty \)

\(\displaystyle (e^{x} + x)^{\dfrac{9}{x}} \)

\(\displaystyle (e^{\infty} + \infty)^{\dfrac{9}{\infty}} \)

\(\displaystyle (\infty + \infty)^{0} \)

\(\displaystyle (\infty)^{0}\) :confused:
 
Last edited:
\(\displaystyle \lim x \rightarrow \infty \)

\(\displaystyle (e^{x} + x)^{\dfrac{9}{x}} \)

\(\displaystyle (e^{\infty} + \infty)^{\dfrac{9}{\infty}} \)

\(\displaystyle (\infty + \infty)^{0} \)

\(\displaystyle (\infty)^{0}\) :confused:
\(\displaystyle \displaystyle \lim_{x \to \infty} (e^x +x)^{9/x}\)

Take the logarithm.

\(\displaystyle \displaystyle \ln\left(\lim_{x \to \infty} (e^x +x)^{9/x}\right) = \lim_{x \to \infty}\left(\dfrac{9\ \ln (e^x + x)}{x}\right)
\implies \ \cdot \ \cdot \ \cdot\)
 
\(\displaystyle \displaystyle \lim_{x \to \infty} (e^x +x)^{9/x}\)

Take the logarithm.

\(\displaystyle \displaystyle \ln\left(\lim_{x \to \infty} (e^x +x)^{9/x}\right) = \lim_{x \to \infty}\left(\dfrac{9\ \ln (e^x + x)}{x}\right)
\implies \ \cdot \ \cdot \ \cdot\)

It still comes out to "infinity over infinity" which is indeterminate.
 
\(\displaystyle \lim x \rightarrow \infty \)

\(\displaystyle (e^{x} + x)^{\dfrac{9}{x}} \)

\(\displaystyle (e^{\infty} + \infty)^{\dfrac{9}{\infty}} \)

\(\displaystyle (\infty + \infty)^{0} \)

\(\displaystyle (\infty)^{0}\) - Indeterminate

\(\displaystyle (e^{x} + x)^{\dfrac{9}{x}} \) Rewrite

\(\displaystyle \dfrac{9}{x} \ln (e^{x} + x)\)

\(\displaystyle \dfrac{9 \ln (e^{x} + x)}{x} \)

\(\displaystyle \dfrac{\dfrac{d}{dx} 9 \ln (e^{x} + x)}{\dfrac{d}{dx} x} \)

\(\displaystyle \dfrac{9 \ln (u)}{1} \)

\(\displaystyle \dfrac{\dfrac{9}{u}(e^{x} + 1)}{1} \)

\(\displaystyle \dfrac{\dfrac{9}{e^{x} + x}(e^{x} + 1)}{1} \)

\(\displaystyle \dfrac{\dfrac{9e^{x} + 9}{(e^{x} + x)}}{1} \)

\(\displaystyle \dfrac{\dfrac{9e^{\infty} + 9}{(e^{\infty} + (\infty)}}{1} \)

\(\displaystyle \dfrac{\infty}{1} \) :confused: Answer?
 
Last edited:
\(\displaystyle \lim x \rightarrow \infty \)

\(\displaystyle (e^{x} + x)^{\dfrac{9}{x}} \)

\(\displaystyle (e^{\infty} + \infty)^{\dfrac{9}{\infty}} \)

\(\displaystyle (\infty + \infty)^{0} \)

\(\displaystyle (\infty)^{0}\) - Indeterminate

\(\displaystyle (e^{x} + x)^{\dfrac{9}{x}} \) Rewrite

\(\displaystyle \dfrac{9}{x} \ln (e^{x} + x)\)

\(\displaystyle \dfrac{9 \ln (e^{x} + x)}{x} \)

\(\displaystyle \dfrac{\dfrac{d}{dx} 9 \ln (e^{x} + x)}{\dfrac{d}{dx} x} \)

\(\displaystyle \dfrac{9 \ln (u)}{1} \)

\(\displaystyle \dfrac{\dfrac{9}{u}(e^{x} + 1)}{1} \)

\(\displaystyle \dfrac{\dfrac{9}{e^{x} + x}(e^{x} + 1)}{1} \)

\(\displaystyle \dfrac{\dfrac{9e^{x} + 9}{(e^{x} + x)}}{1} \)

\(\displaystyle \dfrac{\dfrac{9e^{\infty} + 9}{(e^{\infty} + (\infty)}}{1} \)

\(\displaystyle \dfrac{\infty}{1} \) :confused: Answer?
IF it came to "\(\displaystyle \dfrac{\infty}{1}\)" then the answer would be "infinity" or "there is no limit".
(Saying the limit is "infinity" is just saying the limit does not exist in a particular way.)

However, it is not. The limit of \(\displaystyle \dfrac{9e^x+ 9}{e^x+ x}\) is not "infinity". But surely you know that \(\displaystyle \dfrac{\dfrac{9e^x+ 9}{e^x+ x}}{1}\) is just
\(\displaystyle \dfrac{9e^x+ 9}{e^x+ x}\)?

Divide both numerator and denominator by \(\displaystyle e^x\).
 
Last edited:
Top