Hello, sallyk57!
Evaluate: \(\displaystyle \,\lim_{x\to0}\frac{1\,-\,cos x}{x^2}\)
Multiply top and bottom by \(\displaystyle (1\,+\,\cos x):\)
\(\displaystyle \L\;\;\frac{1\,-\,\cos x}{x^2}\,\cdot\,\frac{1\,+\,\cos x}{1\,+\,\cos x}\;=\;\frac{\1\,-\,\cos^2x}{x^2(1\,+\,\cos x)}\;=\;\frac{\sin^2x}{x^2(1\,+\,\cos x)} \;=\;\left(\frac{\sin x}{x}\right)^2\frac{1}{1\,+\,\cos x}\)
Therefore: \(\displaystyle \L\,\lim_{x\to0}\left[\left(\frac{\sin x}{x}\right)^2\frac{1}{1\,+\,\cos x}\right] \;= \;(1)^2\cdot\frac{1}{1\,+\,1}\;=\;\frac{1}{2}\)