Limit of (x-1)/[(x^2 + x)^1/2 - (2x)^1/2] as x -> 1

Multiply top and bottom by the conjugate of the denominator.

\(\displaystyle \L\\\frac{(x-1)}{\sqrt{x^{2}+x}-\sqrt{2x}}\cdot\frac{\sqrt{x^{2}+x}+\sqrt{2x}}{\sqrt{x^{2}+x}+\sqrt{2x}}\)

=\(\displaystyle \L\\\frac{\sout{(x-1)}(\sqrt{x^{2}+x}+\sqrt{2x}}{x\sout{(x-1)}}\)

You have:

\(\displaystyle \L\\\lim_{x\to\1}\frac{\sqrt{x^{2}+x}+\sqrt{2x}}{x}\)
 
Top