Here's the problem statement: Find lim f [sup:iw3d6lgg]- 1[/sup:iw3d6lgg](x) as x approaches 2 for f(x) = 1 / [ 1 + 1 / sqrt(x) ].
First, I found f [sup:iw3d6lgg]- 1[/sup:iw3d6lgg](x):
1 / [ 1 + 1 / sqrt(x) ] = y
1 + 1 / sqrt(x) = 1 / y
1 / sqrt(x) = 1 / y - 1 = (1 - y) / y
sqrt(x) = y / (1 - y)
x = y[sup:iw3d6lgg]2[/sup:iw3d6lgg] / (1 - y)[sup:iw3d6lgg]2[/sup:iw3d6lgg]
So, f [sup:iw3d6lgg]- 1[/sup:iw3d6lgg](x) = x[sup:iw3d6lgg]2[/sup:iw3d6lgg] / (1 - x)[sup:iw3d6lgg]2[/sup:iw3d6lgg], and f [sup:iw3d6lgg]- 1[/sup:iw3d6lgg](2) = 2[sup:iw3d6lgg]2[/sup:iw3d6lgg] / (1 - 2)[sup:iw3d6lgg]2[/sup:iw3d6lgg] = 4 / (-1)[sup:iw3d6lgg]2[/sup:iw3d6lgg] = 4, so lim f [sup:iw3d6lgg]- 1[/sup:iw3d6lgg](x) as x approaches 2 = 4.
However, the answer in my textbook says lim f [sup:iw3d6lgg]- 1[/sup:iw3d6lgg](x) as x approaches 2 for f(x) = 1 / [ 1 + 1 / sqrt(x) ] is not defined.
My question: Am I wrong, or is my textbook?
First, I found f [sup:iw3d6lgg]- 1[/sup:iw3d6lgg](x):
1 / [ 1 + 1 / sqrt(x) ] = y
1 + 1 / sqrt(x) = 1 / y
1 / sqrt(x) = 1 / y - 1 = (1 - y) / y
sqrt(x) = y / (1 - y)
x = y[sup:iw3d6lgg]2[/sup:iw3d6lgg] / (1 - y)[sup:iw3d6lgg]2[/sup:iw3d6lgg]
So, f [sup:iw3d6lgg]- 1[/sup:iw3d6lgg](x) = x[sup:iw3d6lgg]2[/sup:iw3d6lgg] / (1 - x)[sup:iw3d6lgg]2[/sup:iw3d6lgg], and f [sup:iw3d6lgg]- 1[/sup:iw3d6lgg](2) = 2[sup:iw3d6lgg]2[/sup:iw3d6lgg] / (1 - 2)[sup:iw3d6lgg]2[/sup:iw3d6lgg] = 4 / (-1)[sup:iw3d6lgg]2[/sup:iw3d6lgg] = 4, so lim f [sup:iw3d6lgg]- 1[/sup:iw3d6lgg](x) as x approaches 2 = 4.
However, the answer in my textbook says lim f [sup:iw3d6lgg]- 1[/sup:iw3d6lgg](x) as x approaches 2 for f(x) = 1 / [ 1 + 1 / sqrt(x) ] is not defined.
My question: Am I wrong, or is my textbook?