\(\displaystyle \lim_{x\to-\infty}\,\left[\sqrt{9x^2\,+\,x}\,-\,3x\right]\)
\(\displaystyle \L\frac{\sqrt{9x^2\,+\,x}\,-\,3x}{1}\,\cdot\,\frac{\sqrt{9x^2\,+\,x}\,+\,3x}{\sqrt{9x^2\,+\,x}\,+\,3x} \;=\; \frac{9x^2\,+\,x\,-\,9x^2}{\sqrt{9x^2\,+\,x}\,+\,3x}\;\) . . . correct to this point