how do i evaluate the limit as n goes to infinity of ln[n/(2n+5)] ?
T thebenji New member Joined Sep 2, 2006 Messages 31 Oct 31, 2006 #1 how do i evaluate the limit as n goes to infinity of ln[n/(2n+5)] ?
G galactus Super Moderator Staff member Joined Sep 28, 2005 Messages 7,216 Oct 31, 2006 #2 try rewriting: \(\displaystyle \L\\ln(\frac{n}{2n+5})=ln\left(\frac{1}{2}-\frac{5}{2(2n+5)}\right)\) \(\displaystyle \L\\\lim_{n\to\infty}[ln\left(\frac{1}{2}-\frac{5}{2(2n+5)}\right)]\) Now, see what the limit is?.
try rewriting: \(\displaystyle \L\\ln(\frac{n}{2n+5})=ln\left(\frac{1}{2}-\frac{5}{2(2n+5)}\right)\) \(\displaystyle \L\\\lim_{n\to\infty}[ln\left(\frac{1}{2}-\frac{5}{2(2n+5)}\right)]\) Now, see what the limit is?.
stapel Super Moderator Staff member Joined Feb 4, 2004 Messages 16,582 Oct 31, 2006 #3 I would try setting y equal to ln(x/(2x + 5)), and then looking at the limit of e<sup>y</sup> as x goes to infinity. Eliz.
I would try setting y equal to ln(x/(2x + 5)), and then looking at the limit of e<sup>y</sup> as x goes to infinity. Eliz.
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Oct 31, 2006 #4 Re: limit ln(n/(2n+5)) Hello, thebenji! How do I evaluate: \(\displaystyle \,\L\lim_{n\to\infty} \ln\left(\frac{n}{2n\,+\,5_\right)\) Click to expand... The same way you treat most rational functions . . . Divide top and bottom by \(\displaystyle n:\) . . \(\displaystyle \L\lim_{n\to\infty}\ln\left(\frac{\frac{n}{n}}{\frac{2n}{n}\,+\,\frac{5}{n}}\right) \;= \;\lim_{n\to\infty}\ln\left(\frac{1}{2\,+\,\frac{5}{n}\right)\) . . \(\displaystyle \L=\;\ln\left(\frac{1}{2\,+\,0}\right)\;=\;\ln\left(\frac{1}{2}\right) \;=\;-\ln(2)\)
Re: limit ln(n/(2n+5)) Hello, thebenji! How do I evaluate: \(\displaystyle \,\L\lim_{n\to\infty} \ln\left(\frac{n}{2n\,+\,5_\right)\) Click to expand... The same way you treat most rational functions . . . Divide top and bottom by \(\displaystyle n:\) . . \(\displaystyle \L\lim_{n\to\infty}\ln\left(\frac{\frac{n}{n}}{\frac{2n}{n}\,+\,\frac{5}{n}}\right) \;= \;\lim_{n\to\infty}\ln\left(\frac{1}{2\,+\,\frac{5}{n}\right)\) . . \(\displaystyle \L=\;\ln\left(\frac{1}{2\,+\,0}\right)\;=\;\ln\left(\frac{1}{2}\right) \;=\;-\ln(2)\)