\(\displaystyle \L\\\lim_{x\to\infty}(e^{x}+e^{2x})^{\frac{2}{x}}\)
Rewrite:
\(\displaystyle \L\\\lim_{x\to\infty}e^{\frac{2}{x}ln(e^{x}+e^{2x})}\)
\(\displaystyle \L\\e^{\lim_{x\to\infty}(\frac{2}{x}ln(e^{x}+e^{2x}))}\)
\(\displaystyle \L\\e^{2\lim_{x\to\infty}\frac{ln(e^{x}+e^{2x})}{x}}\)
Now, try L'Hopital's rule:
\(\displaystyle \L\\ln(e^{x}+e^{2x})dx=2-\frac{1}{e^{x}+1}\)
\(\displaystyle \L\\e^{2\lim_{x\to\infty}\frac{2-\frac{1}{e^{x}+1}}{1}}\)
As can be seen, the limit of \(\displaystyle \L\\2-\frac{1}{e^{x}+1}\rightarrow\2\)
So, we have:
\(\displaystyle \L\\e^{2(2)}=e^{4}\)