I read this problem in a book or a magazine. It consists of infinitely nested square roots.
The following limit does exist. \(\displaystyle \ \ \) Find the limit.
\(\displaystyle \displaystyle\lim_{x\to 0^{+}} \ \sqrt{x \ + \ \sqrt{x \ + \ \sqrt{x \ + \ \sqrt{x \ + \ ... \ } \ } \ } \ }\)
The following limit does exist. \(\displaystyle \ \ \) Find the limit.
\(\displaystyle \displaystyle\lim_{x\to 0^{+}} \ \sqrt{x \ + \ \sqrt{x \ + \ \sqrt{x \ + \ \sqrt{x \ + \ ... \ } \ } \ } \ }\)