lim [(2/1-x^2) - (1/1-x)] x->-1
pka Elite Member Joined Jan 29, 2005 Messages 11,976 Jun 10, 2006 #2 Is this the problem? \(\displaystyle \L \lim _{x \to - 1} \left[ {\frac{2}{{1 - x^2 }} - \frac{1}{{1 - x}}} \right] = \lim _{x \to - 1} \left[ {\frac{1}{{1 + x}}} \right]\) If you graph the expression, then you will see the answer.
Is this the problem? \(\displaystyle \L \lim _{x \to - 1} \left[ {\frac{2}{{1 - x^2 }} - \frac{1}{{1 - x}}} \right] = \lim _{x \to - 1} \left[ {\frac{1}{{1 + x}}} \right]\) If you graph the expression, then you will see the answer.