For what value of "a" is the following equation true? lim [x -> infty] [(x + a) / (x - a)]^x = e
T theschaef New member Joined Oct 17, 2006 Messages 10 Oct 29, 2006 #1 For what value of "a" is the following equation true? lim [x -> infty] [(x + a) / (x - a)]^x = e
G galactus Super Moderator Staff member Joined Sep 28, 2005 Messages 7,216 Oct 29, 2006 #2 Where are you stuck?. Evaluate the limit. What value of 'a' makes your solution equal to e?. I'll get you started: \(\displaystyle \L\\\lim_{x\to\infty}\left(\frac{x+a}{x-a}\right)^{x}\) =\(\displaystyle \L\\\lim_{x\to\infty}e^{xln\left(\frac{x+a}{x-a}\right)}\) Rewrite using L'Hopital's rule: =\(\displaystyle \L\\e^{{-}2a\left(\lim_{x\to\infty}\frac{x^{2}}{(x+a)(x-a)}\right)}\) =\(\displaystyle \L\\e^{{-}2a\left(\lim_{x\to\infty}\frac{1}{-1+\frac{a^{2}}{x^{2}}}\right)}\) Can you finish?. Almost there.
Where are you stuck?. Evaluate the limit. What value of 'a' makes your solution equal to e?. I'll get you started: \(\displaystyle \L\\\lim_{x\to\infty}\left(\frac{x+a}{x-a}\right)^{x}\) =\(\displaystyle \L\\\lim_{x\to\infty}e^{xln\left(\frac{x+a}{x-a}\right)}\) Rewrite using L'Hopital's rule: =\(\displaystyle \L\\e^{{-}2a\left(\lim_{x\to\infty}\frac{x^{2}}{(x+a)(x-a)}\right)}\) =\(\displaystyle \L\\e^{{-}2a\left(\lim_{x\to\infty}\frac{1}{-1+\frac{a^{2}}{x^{2}}}\right)}\) Can you finish?. Almost there.
pka Elite Member Joined Jan 29, 2005 Messages 11,976 Oct 29, 2006 #3 Here is another way: \(\displaystyle \L\lim _{x \to \infty } \left( {\frac{{x + a}}{{x - a}}} \right)^x = \lim _{x \to \infty } \left( {1 + \frac{{2a}}{{x - a}}} \right)^x = ?\)
Here is another way: \(\displaystyle \L\lim _{x \to \infty } \left( {\frac{{x + a}}{{x - a}}} \right)^x = \lim _{x \to \infty } \left( {1 + \frac{{2a}}{{x - a}}} \right)^x = ?\)