galactus said:For #1, divide by x:
\(\displaystyle \L\\\lim_{x\to\0}\frac{\frac{x^{2}}{x}-\frac{2x}{x}}{\frac{sin(3x)}{x}}=\lim_{x\to\0}\frac{x-2}{\frac{sin(3x)}{x}}\)
As you know, \(\displaystyle \L\\\lim_{x\to\0}\frac{sin(x)}{x}=1\), therefore, \(\displaystyle \L\\\lim_{x\to\0}\frac{sin(3x)}{x}=3\)
Then you have:
\(\displaystyle \L\\\lim_{x\to\0}\frac{x-2}{3}=\frac{-2}{3}\)
#2: This one doesn't take much manipulation.
\(\displaystyle \L\\\frac{1-cos(\frac{\pi}{4})}{\frac{\pi}{4}}=\frac{4-2\sqrt{2}}{\pi}\)